Bob Kitch 1990

VZ-VERBATIM

(A Collection of Magazine and
Technical Articles for
VZ Computers 1981 to 1990)

Volume 1 Sof tware
Utilities, Games & Business

Compiled by Bob Kitch 1981 to 1990
Scanned March 2021

Brisbane Australia for ALl VZ Users
E: rbkitchehotmail.com

M: +61 (0) 400 083 465

COMPILERS GUIDE FOR VZ USERS
Bob Kitch
Brisbane March 2021

VZ-Verbatim is a research resource for the DSE VZ00 and VZ300 micro-computers marketed in
Australasia during the 1980's - in the pre-PC and post-TRS80/System 80 eras. Many young (and old)
computer users cut their digital teeth on these Z80-based machines. A number of VZ User Groups
also sprang up, held meetings and produced Newsletters. There was a huge thirst for knowledge,
enthusiasm, learning, coding and general learning about “things digital” centred upon the VZ.

All of the information in this compilation is long out-of-print and quite difficult to obtain. It may not
be sold or recompiled into any other format without my express permission. Note the highly
practical electronic and computing information that was offered in technical magazines of this era.

An information companion to VZ-Verbatim is the “Bob Kitch’s VZ Scrap Book” that contains thirty
technical contributions | made to magazines and various User Groups Newsletters during 1985 to
1990. Approximately 25 BASIC and ASSEMBLER ASCI! listings are provided in that Directory. These
articles were about learning and encouraging VZ Users to develop digital skills and interests.

VZ-Verbatim was a last-Century response to an information demand to encourage a new generation of
digital enthusiasts in the pre-WWW era. It was compiled during 1985 to 1990 but with articles going back
to 1981. The original format was as loose A4 Master Sheets wherein specific photocopies could be returned
by snail mail to interested and puzzled VZ Users. As interest in 8-bit computers waned in early 1990's, a
lone copy of VZ-Verbatim (as two volumes) was made (pictured on cover). It is in the last month these
volumes have come to hand, been scanned at 400dpi and converted to pdf’s.

As a late incarnation of the 8-bit microcomputer era, the Video Technology/DSE VZ200/300 was highly
influential in homes throughout Australasia and under other names elsewhere in the World. A fair level of
interest remains amongst enthusiasts in Vintage Computer Groups and Emulators Users. A number of now
middle-aged men, were young enthusiasts that learned about computing in the 1980's and still use the VZ
for largely nostalgic reasons. | note that a remarkable number of these young enthusiasts are now
employed in the IT industry. These enthusiasts are instrumental in maintaining Z80 emulators and
hardware, have added more convenient |I/O peripherals than the contemporary cassette and floppies and
have added memory capabilities beyond 64K. Tape and disk software has been converted to more durable
digital formats.

Preserving and providing ready access the “Lump” of VZ technical information, software images, operating
hardware and emulators is regarded as a priority. This compilation is part of that “VZ Lump”.

Bob Kitch

Brisbane, Queensland, Australia
E: rbkitch@hotmail.com

M: +61 (0) 400 083 465

mailto:rbkitch@hotmail.com

Structure of Volumes
Following on the blue pages is a complete listing of all articles contained within Volumes 1 and 2.
This is shown in the original list format that was frequently updated and circulated to VZ Users.

Pages 12 to 14 of that list is included for completeness. These pages are a list of books on BASIC, Assembler
and the Z80. Most of these are available on-line as e-books in pdf format.

The yellow pages detail the various sections within the volumes.

Volume 1 contains software articles categorised as
Utilities
Games
Business

Volume 2 contains
Hardware Peripherals
Software Reviews
Software Advertisements
Hardware Reviews
General Programming
DSE Technical Bulletins.

These volumes were derived from 400dpi scans of second generation photocopies of the original bound
articles and were delivered in Adobe Acrobat pdf format.

Using Adobe Acrobat Pro 2017 each page was edited and enhanced involving
) character recognition to provide editable text and images

J text and images de-skewed
) font replaced with document fonts for sharpening

VZ-VERBATIM

VOLUME 1

BY: R.B. KITCH

JULY 1990

Page 1

LISTING OF VZ2200/300 MAGAZINE ARTICLES

AS AT 31 JULY 1990

Since its introduction in early 1983, over three hundred articles
on the VZ-200 and 300 have appeared in the magazines. Some articles
review the hardware and others describe peripherals. Some excellent
games have been published and a very useful set of utility routines has
emerged.

This bibliography for the VZ computer is a must for the serious
VZ-User.

Compiled by: -

R.B. KITCH, 7 Eurella St., Kenmore, Qld. 4069. Phone: (07)378-3745.
PLEASE ADVISE OF ANY ADDITIONAL ARTICLES ..or.. CHANGES, ALTERATIONS OR
BUGS IN LISTINGS to assist other Users.

The numbers in brackets are the number of sheets in each article.
A dash (-) indicates that the article is on the same sheet as the item
above.

If Users wish to obtain copies of the articles referred to in this
bibliography, they may -

i) contact me for copies ..or..
ii) buy back copies of the magazine from the distributor ..or.
iii) borrow from your local library.

I can supply copies FOR YOUR OWN USE ONLY at 20c. per sheet.
Kindly add postage to your request as follows:

No. of Sheets Qld. Interstate (Surface)
1 - 3 $0.41 S0.41
4 - 18 $0.95 S1.10
19 - 90 S1.90 $2.50

> 90 expensive!

QS «
Jan.
Nov.
Nov.
Feb.
Mar.
Apr.

May

Jun.
Jul.
Mar.
Apr.
Jul.
Jul.
Aug.
Aug.
Aug.
Apr.
Aug.
Aug.

Nov.
Nov.
Sep.
Sep.
Oct.
Nov.
Nov.

Nov.
Nov.
Dec.
Feb.
Feb.

Feb.
Mar.
Apr.
Apr.

Apr.
Apr.
Jul.

May
May
May

Aug.
Aug.
Sep.
QRE .
O@ic .
Nov.
Nov.

UTILITIES
83 APC
84 APC
83 APC
83 APC
84 APC
84 APC
84 APC
84 APC
84 APC
84 APC
84 ETI
85 ETI
84 BB
84 M8O
84 M8O
84 M8O
84 M8O
85 APC
85 APC
84 APC
84 APC
84 APC
84 @3
84 BB
84 ETI
84 APC
84 APC
84 PCG
84 PCG
84 BB
85 APC
85 APC
85 ARA
85 Cx
85 PCG
85 APC
85 APC
85 APC
85 APC
85 APC
85 ETI
SISNNAEC
85 APC
85 APC
85 APC
85 APC
85 APC
85 APC
85 ETI

52,4
2Q=21l
57 S
3G=0)5
140-1
42-3
T 1=2

75-6
67

L 25=3@
63

117

56

3-4

) bS] kG
3-4

97

31

94

76

125

i1g

63
LYS=T
L25=
20 &= L2

BI9=1516
suppl.
64

L7l

20

19-26
12-14
62-64
19

103
oI5
176

5 2=3,
e =101
110
130
1.80)=3}
145
218
147
189
94-5

BASIC program conversion. (Surya)
Beginners tips. (White)

Program conversion Pt. 2 (Surya)
BASIC converter chart. (Surya)
Program conversion Pt. 2 (Surya)
Program conversion - Apple II (Surya)
Program conversion - TRS 80/System 80

(Surya)
Program conversion - Atari (Surya)
Program conversion - Sinclair (Surya)
Program conversion - BBC (Surya)

More functions for the VZ-200. (Olney)
Notes and errata for Olney.

Some more routines. (Middlemiss)

VZED - three new functions.

VZ-200 output latch.

Memory peek VZED. (Carson)

Microsoft ROM BASIC Level I bug.
VZ-200 bug. (Tritscher)

VZ bug. (Tritscher)

VZ-200 moving message and trace.
(Batterson)

Trace function. (Breffit)

VZ-200 correction. (Kelly)

VZ200 Input. (Woolf)

Poking extra functions. (Clark & Hill)
Extending VZ-200 BASIC. (Olney)

TRON/TROFF function for VZ-200. (Thompson)

MON-200 machine code monitor.
(Stamboulidas)

Lprinter. (Quinn)

VZ-200 reverse video.

Enlarged characters. (Velde)

BASIC understanding. (Hobson)

VZ-200 into puberty - Olney’s

. extended BASIC.
Calculating grey line. (Baker)
Renumber. (Marsden)

Find. (Stamboulidas)

Use of RND in dice and card games.
(Holland)

VZ variable definition. (Stamboulidas)
Variable GO TO on VZ. (Olsen)
Correction to VZ variable GO TO.
Lysco support for VZ-200. (Young)
VZ-200 hardware interrupt. (Olney)
Background VZ. (Williams)

VZ-200 instant colour. (Willows)
Reversed REM. (Quinn)

Real-time clock. (Griffin)

APC benchmark BASIC programs.

VZ deletions. (Quinn)

VZ EDITOR/ASSEMBLER tips. (Lam)
Olney’s Level II BASIC for VZ200/300.
(Rowe)

Page 2

—_~ e~~~ A~~~
(NS RN GO RES B CC N B S
— —

PP PPl PP

e e e e R Nan N Ran e Nan N e
N U e e N N N e N

AAAAAAAA,-\AAAA
L S S TR S) [S [VN G VN
R s e &) e e S B S o

™

Jan.
Feb.
Mar.
Mar.

May

Jun.
Aug.

OPE ¢
Sep.
Oees
Ot
Oct.
Oct.
Nov.
Dec.
Mar.
JANOIE ¢
Apr.

May

Jun.
Aug.

Feb.
J UL
Oct.
Oct.
Nov.
Feb.
Feb.
Nov.
Nov.
Jan.

86
86
86
86
86
86
86

86
86
86
86
86
86
86
86
87
87
87
87
87
87
88
88
88
88
88
88
88
89
89
89
89
90

APC
APC
APC

YC
APH
APC
ETI

ETI
AEM
AEM
AEM
UL
ARA

EA
AEM

AR

EA
ARA
AEM
AEM
AEM
BYC

JZILIE
IS
ETI
AEM
ETI
ETI
ETI
ETI
ETI
CBA

83,5
257
AR
103-5
54-55
209
86-89

Z(6= 513
§9=92
L=t 12
NS 7 Gl 2l
47
38-42
35
90=95
10=12
100-101
20-24
86-88
74,75,79
82-83
88

70

74

124
5=
120
ISSSENSIRO
L=l A0
73

73

L 7=19

VZ user graphics.

Machine language calls.

APC BASIC converter chart 1986.

VZ-200 cassette inlays. (Dutfield)

VZ and photography. (Kohen)

VZ pause.

VZ software mods. (CHIP-8 Editor)
(Griffin)

VZ CHIP-8 Interpreter. (Griffin)
Screen handling on VZ. Part I. (Kitch)
Screen handling on VZ. Part II. (Kitch)
Reference list of VZ articles. (Kitch)
Labeller. (Gallagher)

Amateur radio logger. (Johnson)
Speaker enclosure calculator. (Allison)
Memory mapping on VZ. (Kitch)

Feedline calculations. (Buhre)

Op amp noise. (Allison)

Beam Headings. (Baker)

VZ Epson printer patch. (Taylor)

VZ Epson printer patch Pt II.

VZ expanded EPROM. (Meager)

Restore file. (Banks & Saunders)
B-file copier. (Buhre)

String file name. (Hand)

Disk directory dumper. (Tunny)
CTRL-Break disabler. (Tunny)

VZBUG. (Batger)

Clock. (Tunny)

DOS Hello (Tunny)

Visisort (Sheppard)

Restore (Rowe)

Hex/dec conversion (Maunder)

Beam headings (Baker)

Page 3

I lalaYaVYaVa

— D W o — —
— — —

AN TN TN AN AN N AN TN AN AN AN AN AN AN ANANANNNANANANANANANAD

WEREPRPNNEPNDMNNDPRPPRPPRPPEPDO0LON WO - U 0SS0 W
e N N N N N N N N N N N N e N N N N N S N N N N N N N

GAMES
Nov/Dec83
Dec. 83
Feb. 84
Jan. 84
Apr. 84
Jul. 84
Jul. 84
Jul. 84
Aug. 84
Aug. 84
OGE ; 84
Nov. 84
Jan. 85

- 85
Mar. 86
- 85
Jan. 85
Jan. 85
Jan. 85
Feb. 815
Mar. 85
Mar. 85
Apr. 85
Apr. 85
May 85
May/Jun85
Jun 85
Jan. 86
Jul. 85
Aug. 85
0@ ; 85
Oct. 85
Mar. 86
May 86
Jul. 86
- 88
- 88
- 88
- 88
- 88
- 88
- 88
- 88
- 88
- 88
- 88
Apr. 88
Jul. 88
Aug. 88
Nov. 88

May 89

SYN
APC
BB
Wi(E

APC
APC
M80
M80
M80
M80
PG

PCG

PCG
BYE
CFG
JENG,
APC
YC
PCG
CI
Ve
CI
YC
PCG
YiC
PCG
YC
HE
YC
YC
PCG
piE
APC
ETI

e
BYE
BYE
BYIE
BYC
BYE
BYC
BYC
BYC
BY¥C
BYC
BYC
ETI
ETI
ETI
ETI
SN

22-24
INEHESS
50)=5 1l
65

178-80
174-8
1,22
7,20 , 21
9,16

9, &, kY
55=7

82

54
146-7
4-5
147
129=31
88-89
44-48
27 =26
110)5="9)

160
©5="7
106
53=7
70
1150=1
81
114
47-52
105 =7
208-9
93

75

76

77

78
79=812
83

84

85
86-87
87

87

88

65

73

65
121
87-88

Projectile Plotting (Grosjean)
Missile Command. (Whitwell)
Caddy and Reaction Test. (Hartnell)
Graphic Sine Waves for VZ-200.
(Nickasen)

Moon Lander. (Alley)

Blockout. (Pritchard)
Battleships. (Carson)

Junior Maths. (Carson)

Contest Log VZED. (Carson)

Dog Race VZED. (Carson)

High Resolution Graphics Plotting.
(Thompson)

Tips for ’'Ladder Challenge’, ’‘Panik’
and ’'Asteroids’.

POKE’'s to ’'Ghost Hunter’.

Golf Simulation. (McCleary)

Golf Simulation. (McCleary)
Knight’s Cross. (Lucas)
Sketcher. (Leon)

Punch. (Rowe)

Space Station Defender. (Shultz)
Lost. (Potter)

Decoy. (Rowe)

Mouse Maze. (Crandall)

Painter. (Daniel)

Roadrace. (Thompson)

Number Sequence. (Thompson)
Sketchpad. (Thompson)

Morse Tutor program. (Heath)
Morse Tutor - again. (Heath)
Electric Tunnel. (Daniel)

Number Slide. (Daniel)

Cube. (McMullan)

Yahtzee. (Thompson)

VZ Frog. (Alley)

Balloon Safari, The Drop and Flatten.

(Sheppard)

Simon. (Proctor)

Drawing Program. (Winter)
Tea-pot Song. (Winter)

Ping Tennis. (Duncan)
Concentration. (Vella)

Super Snake Trapper. (Duncan)
Worm. (Thompson)

Dogfight. (Thompson)

Bezerk. (Banks & Saunders)
Arggggh! (Banks & Saunders)
Encode/Decode. (Banks & Saunders)
Catch. (Banks & Saunders)
U-foe. (Alderton)
Disintegrator. (Stibbard)
Star Fighter. (Roberts)
Drawing Board. (Maunder)
Camel (Maunder)

Page 4

R e e T I s e s e e e e e ey

PLUORPNDPRPUOPRPWERLRELENDNDUONWE | NI -
Nt S S N N N N N N N N N S S S S S N N S N N

e e N e N N N N N v N N N N N N

NEPPPPRPRENRRRRAR BB R

Aug.
(@R
Qe 5
O,
Dec.

May

Jul.
Feb.

BUSINESS
84 APC
84 APC
BISINPAEE
84 APC
84 APC
BISESPAEC
B « AEC
BE T

W7 2="
214
82-3
126=30
214

il 62 =3
164-6
72

Database VZ-200. (Barker)

WP for VZ-200. (McQuillan)

Comment on Barker’s and Quinn’s DB.
Minicalc Spreadsheet. (Stamboulidas)
Correction to Minicalc.

Micro Type(WP). (Browell)

Database. (Quinn)

VZ Wordprocessor. (Tunny)

(Lukes)

Page 5

I O

~Ne—————~—
— NN ;|

Feb.
Aug.
Aug.
@k
Dec.
CCiE:
Nov.
Nov.
Dec.
Aug.
Jun.

Sep.
Jan.
Feb.

Mar.
Jul.

OCi=
Jan.
Feb.

May

Jan.
Aug.

May

iR
Jun.
Jun.
Apr.
ANE.
Jun.
Jul.

May

Apr.

May

Jun.

JuL

PERIPHERALS
84 EA
84 EA
84 PCG
84 APC
84 APC
85 E{E©
84 BI
B4R TS
84 ETI
5 s
86 EA
85 AR
86 AR
86 ETI
86 ETI
86 ETI
SR ETYTE
87 EA
87 AR
87 EA
88 EA
88 EA
89 EA
88 EA
87 EA
87 AEM
88 AR
88 AEM
88 AEM
88 AEM
88 ETI
89 ETI
8I81 SETT
88 ETI
88 ETI

131-2
65

83

214

36

140
3,4
106-12
g3-7
7248
106

@=Ll
1 E=20
72-4

48
35)=(6)0

14

60
LE="17
3l
174
138
124-125
140
2%

8
L=l 8
8 7=63
7

7

70

96
82-86
86-89

BIES192

Page 6

Real-world interface.

Improved graphics on VZ-200. (Dimond)

I/0 card for VZ-200. (ad)

Serial help request. (Pope)

Add-ons for VZ-200. (Bleckendorf)

VZ200/300 Modem. (ad)

RTTY with VZ200. (Keatinge)

A 'Glass-Teletype’ using the VZ-200 Pt I
n n n n Pt I I

VZ-200 terminal.

VZ serial terminal. (ad DSE kit K6317)

Assembler listing of RS-232 ROM software

Another RTTY. (Butler) ‘!

Morse on RTTY. (Butler)

Modifying VZ-200 16K memory expansion.

(Olney)

Talking VZ-200. (Bennets)

Super II VZ-200 hardware modifications.

(Sorrell)

Errata for Super II.

EPROM programmer modification. (Buhre)

Morse Interface. (Forster)

16K Memory Expansion VZ300. (Kosovich)

VZ-300 expansion problem.

VZ-300 expansion.

RAM Expansion - Discussion (Sorrell)

Circuit idea.

Errata Memory Expansion.

VZ software. (Thompson)

Memory expansion for V2200/300

Ultra-graphics adaptor. (Sorrell)

Correction.

Correction.

VZ amp. (Merrifield)

Better VZ amp. (Hobson)

VZ300 EPROM programmer. (Nacinovich)

BASIC listing of software

VZ300 data logger. (Sutton)

e e

A AAAAAAAAAAAAAAAA
DN — I 3G 3)
v ()~ N e N N N N N e N

—_
- W
— —

I WD | O

L e e e e e e e T S N e e
LIS O) N R B B
N e’ e e N N N N N N N N N N N N N N N N N

UM -

Mar.
Aug.

Qe

Nov.
Jan.
Feb.
Mar.
Apr.
Apr.
Oct.

Nov.

Nov.

COMMERCIAL SOFTWARE REVIEWS

84 APC 190-1 Review of DSE ’‘Matchbox’, ’'Biorhythms’,
'Circus’ and ’'Poker’. (Davies)

84 PCG 46-47 Review of DSE ’‘Panik’ and ’‘Ladder
Challenge’.

84 PCG 90-91 Review of DSE ’‘Knights and Dragons'’,
'Ghost Hunter’, ’'Othello’, and
"Invaders’.

84 PCG 90-96 Review of LYSCO ’‘Cub Scout’ and
DSE '‘Dracula’s Castle’.

SISREREC GG Review of DSE ‘Air Traffic Controller’
and ‘Tennis’.

85 PCG 76 Review of DSE ’‘Defence Penetrator’ and
"Star Blaster'.

85 PCG 76-77 Review of DSE ‘Planet Patrol'’ and
'Learjet’.

85 PBCG 94-99 Review of DSE '‘Asteroids’, Super Snake'’
and ‘Lunar Lander'’.

&5 g - O3 Logbook and Morse on VZ-200.

85 PCG 68-9 Review of DSE ’‘Duel’.

85 PCG 70-1 Review of DSE ‘Attack of the Killer
Tomatoes'.

G5 €ClLEe Jil Review of educational software.

Page 7

(2)
(1)

(2)
(1)
(1)
)
(1)

N N N
e)
— — —

N
—
N—

Page 8

SOFTWARE ADVERTISEMENTS

A 15 page compilation of ads. for a variety of software,
services, User groups etc. (12)

HARDWARE REVIEWS

Apr. 83
Apr. 83
Apr. 83
May 83
Jun. 83
Jun. 83
Jun. 83
Aug. 84
UL 88
Jul. 83
L 83
Sep. 83
Sep. 83
Aug. 83
Sep. 83
Oeic 83
Oct. 83
Oct. 83
Dec. 83
Nov. 83
Nov. 83
Nov/Dec83
Feb. 84
Spring 84
Jun. 84
Aug. 84
QEhe 5 84
Nov. 84
Nov. 84
Dec. 84
Mar. 85
Jul. 65
Aug. 85
Dec/Jan86
Aug. 86
Nowv. 86
Dec. 87
Dec. 87

YCU
ARE
CC
ce
EA
ETI
Ve
PCG
ETI

EA

PCN
WM
BB

Y©
e
APC
WM
cy
chy
C
WM
SYN
cC
MC
EA
EA

PCG
EEE
EA

CHE
EA
B
EA
PCG
AHC
AHC
ME
YC

56-59
58-66
38-43
26=30)
137
30

%2
S2=7

130=3

16
40
1LE=20

20-33
202-4
77-8
135

12

11
37-40
42-108
L7=22
2 =2
52-4
12=5
30-3

82-87
14-19
78-80

2&=23 i
J1=33
102=6
275=1]
L=l
=39
44

20=2 11
78

Texet TX-8000. (Bennett)

VZ-200. (Hartnell)

Review of VZ-200.

Video Technology VZ-200 PC. (Ahl)

New low-cost computer - VZ-200.

Dick Smith colour computer.

DSE VZ-200.

VZ-200.

DSE’s personal colour computer.
(Harrison)

The VZ-200: colour, graphics and sound.
(Vernon)

Timing the Laser’s phazer. (Stokes)
Laser.

Dick Smith VZ200: good value.
(Fullerton)

Cash and Carry Computers. (Bell)
Review of VZ-200 and PP40.

VZ-200.

Texet TX8000.

The Laser 200.

Laser 200.

A look at the Laser. (Green)

The Laser - a shot in the dark.
VZ-200. (Ahl)

Laser PP40 Printer/Plotter.

Laser 200. (Green)

Buying your first computer. (Vernon)
An important role for small computers.
(Williams)

Home micro supertest. Pt. 3 (Bollington)
Home micro supertest. Pt. 4 (Bollington)
VZ-200 as a WP (DSE E&F tape WP).
(Williams)

Review of video games consoles.

Back to the VZ-200. (Williams)

Dick Smith'’s new VZ-300. (Rowe)

WP on the new VZ-300. (Williams)

How to buy a micro - VZ-300 compared.
Computers for the Rest of Us. (Roberts)
Letter. (Kennedy)

VZ-300. (Hartnell)

Vz-300

Page 9

e R R e e e e
| = LW oW

|

(3)

GENERAL PROGRAMMING

Apr. 81
Jun. 81
Jul. 81
Feb. 82
Mar. 82
Apr. 82
May 82
Jun. 82
Jul. 82
Sep. 82
Nov. 82
Dec. 82
Jan/Feb83
Mar. 83
Aug. 83
Ceie. 83
Nov. 83
Feb. 84
Apr. 84
Nov. 82
Jan. 83
Mar. 84
Apr. 84
May 84
Jun. 84
Jul. 84
Aug. 84
Sep. 84
Jan. 85
Feb. 55
Mar. 85
Apr. 85
OCIES 85
Jun. 85
Jun. 85
@Ec)5
Mar. 86

JBIEL
JFALIL
ETI

Y
VG
e
E
E
YC
WE
EdE©
ME©
NG
V(G
(G
YC
G
V(G
Y€
PE
PE
APC
APC
REE
APC
APC
APC
APC
APC
APC

ENEE
APC
APC

APC
APC
E©
1915,

&7 =93
97
818

64-66
74-77
61-63
60-62
99-101
1-74
57-59
45-46
93-97
52-55
61-62
62-68
87-89
102-104
93-94
123-126
1/1-1/5
84z g)/5
73-85
57-64
89-98
53-60
61-64
110-116
145-151
122-124
103-109

98-109
7/ G617/
82

L7/ 0= 17/ 3
L7 4=073
107-8
17-18

Page 10

Extra Z80 opcodes. (4)

More uncovering Z80. (Dennis) (1)

Z80 uncovered. (Garland) (-)

Z80 CPU reference card (2)

Understanding Assembler (Bell) Part I (3)

(8080) Part II (4)

" " " Part III (3)

it U “ Part IV (3)

i L " Part V (3)

it " t Part VI (39

i . " Part VII (3)

. 2 B 1921 ae WAL ILIE (2)

i " i Part IX (4)

i & ! Part X (4)

g . o Part XI (2)

] i 4 Part XII (6)

u p L Part XIII (2)

i L u Part XIV (3)

. L " 1DETEG e XV (2)

! ” o 125G, VAL (2)

PE Micro-file #1 - 8080 & 8085 (Coles) (5)

PE Micro-file #3 - Z80. (Coles) (5)

Teach yourself assembler Pt. 1 (Overaa) (6)

(8080, 7280, 6502) Pt. 2 (Overaa) (5)

1 1 Pt. 3 (Overaa) (5)

T s Pt. 4 (Overaa) (5)

L L Pt. 5 (Overaa) (3)

T " Pt. 6 (Overaa) ©5))

J Y Pt. 7 (Overaa) (4)

Sort at input. (Ithell) (1)
The basic art - algorithms, structures.

(Liardet) (4)

Pick a number - arithmetic. (Liardet) (5)

It takes all sorts - sorting. (Liardet) s)

The Art of Programming - Progress.

(Hjaltson)

Comment on binary search.
Comment on distribution sort.
Sorting out the sorts.
Z80

(Lamich)
(Riordon)
(Jankowski)

~————
N - -
N et N N N

Page 11

AEM Australian Electronics Monthly ETI Electronics Today
AHC Australian Home Computers International
APC Australian Personal Computer M80 Micro-80
APH Australian Photography

AR Amateur Radio
ARA Amateur Radio Action

BB Bits and Bytes (NZ)

BI Break In (NZ)

BYC Bumper Book of Programs by YC MC Micro Choice (UK)

CBA CB Action

CC Creative Computing (US) PCG Personal Computer Games
CFG Computer Fun and Games PCN Personal Computer News (UK)
CI Computer Input (N2Z) PE Practical Electronics (UK)
CLC Classroom Computing SYN Sync (US)

CT Computing Today (UK) WM Which Micro (UK)
CHC Choice YC Your Computer

EA Electronics Australia YCU Your Computer (UK)

FURTHER LITERATURE RELATING TO THE VZ200/300 COMPUTER

As an extension to my list of magazine articles, I have produced the
following list of books (I have copies of all of the publications). The
books relate to the VZ computer specifically, Microsoft BASIC Level II or
the Z2-80 microprocessors, as used in the VZ200/300. Additionally, I hold
a lot of additional technical information, ROM 1listings, Users Group
newsletters, software etc.

TECHNICAL BULLETINS FOR VZ COMPUTERS

88 Printing out System-80 screen graphics. (
91 Programming the VZ-200 computer’s joysticks. (
92 Finding where variables are stored by the VZ-200’s BASIC. (
93 Problems with the X-7208 printer/plotter and Microsoft BASIC. (
94 Using the X-3245 TP-40 printer/plotter with the VZ-200

& System-80.
98 Printing lower case and control characters on the VZ200/300.
#111 VZ-300 Mailing List tape to disk file conversions.
#114 Obtaining colour on the VZ300.
#116 Fixing the printer bug in the VZ Editor-Assembler.
Letter on tapes and keyboard
General hints on V2Z
Service Manual for printer interface
Service Manual for disk drive controller

HH = H H ¢

R Y
| R N e T R S G Y
DN — ——

~—

Page 12

BOOKS ON VZ COMPUTERS
Henson, T.L., 1983 "Introduction to Computing". DSE, 114 p. (60)
Hartnell, T.,
& Predebon, N., 1983 "Getting Started". DSE, 121 p. (68)
Hartnell, T., 1983 "Further Programming". DSE, 135 p. (74)
Hartnell, T.,
& Pringle, G., 1983 "The Giant Book of Games". DSE, 179 p. (94)
- 1983 "First Book of Programs". DSE, 58 p. (60)
= 1983 "Second Book of Programs". DSE', " 57 p. (60)
Rowe, J., 1983 "VZ-200 Technical Reference Manual®'.
DSE, 22 p. (30)
- 1985 "VZ-300 Technical Manual". DSE, 39 p. (65)
(Available from DSE $14.95)
Hartnell, T., 1986 "Programming the VZ300". DSE, 171 p.
(Available from DSE $14.95)
Hartnell, T., 1986 "The Giant Book of Games for the VZ300".
DS, DUE 59, (Available from DSE $19.95)
Hartnell, T., 1986 "The Amazing VZ300 Omnibus". DSE, 188 p.
(Available from DSE $19.95)
Wolf, G., 1985 "ROM-listings fur Laser 110, 210, 310
und VZ200". Vogel-Buchverlag. 278 p.
Wolf, G., 1985 "Der BASIC-Interpreter in Laser 110, 210,
310 und VZ200". Vogel-Buchverlag. 152 p.
Wolf, G., 1985 "Das Laser-DOS fur Laser 110, 210, 310
und VZ200". Vogel-Buchverlag. L3l 9.
Sanyo, 1984 "Mein Laser Home-Computer, Tips and Tricks
fur Einsteiger".
Sanyo Video Vertrieb. 91 p.
Sanyo, 1984 "Laser Home-Computer, Software-System
Handbuch I".
Sanyo Video Vertrieb. 114 p.
D) rNlieemy, Uk, 1986 "Vprogrammez Hints and Hardware No. 1"
48 p.
Schaper, P., 1987 "Beginners Guide to the VZ 200/300 Editor
Assembler" 57 p.
Olney, S. 1987 "VZ 200/300 Assembly Language Programming

Manual for Beginners". 140 p.

BOOKS ON BASIC

Albrecht,

R oy
J .

L., & Brown,

Albrecht,

Inman, D.,

B.
D., & Zamora,

& Albrecht,

Lien, D.A.

7

7

Finkel,

R.

7

Inman,
R.

7

Zamora,
18

7

Gratzer, G.A. &
Gratzer, T.G.,

Rosenfelder,

Bardon, W.

7

L

7

R.

7

1978

1980

1981
1981

1982

1982

1981

1985

BOOKS ON ASSEMBLER AND Z80
©aEie , Jeodo , 1980
Weller, W.J., 1978
Fernandez, J.N., 1981
& Ashley, R.

Miller, A.R., 1981
Leventhal, L.A., 1979
Leventhal, L.A., 1983
& Saville, W.

Nitschke, W 1985

o/

Page 13

"BASIC". John Wiley, 2nd Edition.
8245 | 8¢

"TRS-80 BASIC". John Wiley. 351 p.

"More TRS-80 BASIC". John Wiley.

280 p.

"Learning TRS-80 BASIC".
Conmpugeite . 9246 joc

"Fast Basic - beyond TRS-80 BASIC".
John Wiley. 278 p.

"BASIC Faster and Better and other
mysteries". IJG, California. 288 p.

"TRS-80 Computer Reference Handbook"
Radio Shack 2nd edit.

"7Z80 Users Manual".
Reston Publishing Co., 326 p.

"Practical Microcomputer Programming:
the Z80". Northern Technology, 481 p.

"Introduction to 8080/8085 Assembly
Language Programming".
John Wiley, 303 p.

"8080/280 Assembly Language -
techniques for improved programming".
John Wiley, 318 p.

"280 Assembly Language Programming".
Osborne/McGraw-Hill.

"Z80 Assembly Language Subroutines".
Osborne/McGraw-Hill, 497 p.

"Advanced Z80 - Machine Code
Programming".
Interface Publications, 342 p.

Nichols, J.
Nichols, E

& Rony, P.R.

Nichols, J.
Nichols, E.

Nichols,

Cs
A.

Ce
A.
& Rony, P.R.

e
Nichols, E.A.,
& Musson, K.R.

Barden, W.,

Barden, W.,

Farvour, J.L.

Sargent, M.
Shoemaker,

Ok dlimaat = 3

4

&

R.L.

Overea, P.A.

Barrow, D.,

Uffenbeck,

Barden, W.,

Goodwin, M.

J

Blattner, J.

Mumford, B

Barden, W.,

4

eeeElaal ILL 5 A

Barrow, D.,

’

L]

1

,

&

&

L7

1973

1983

L97E

1982

1981

1984

1984

1985

LEES

ROF/8

1983

1980

1982

1983

Page 14

"Z-80 microprocessor programming and

interfacing - Book 1". Howard W. Sams,
302 4

"Z-80 microprocessor programming and
interfacing - Book 2". Howard W. Sams,
494 p.

"Z-80 microprocessor advanced interfacing
with applications in data communications".
Howard W. Sams, 347 p.

"TRS-80 Assemblv-Language Programming".
Radio Shack, 224 p.

"More TRS-80 Assembly-Language Programming".
Radio Shack, 430 p.

"Microsoft BASIC Decoded and other
mysteries". IJG, California, 310 p.

"Interfacing Z80 microcomputers to the
real world". Addison Wesley, 288 p.

"Pocket Guide Assembly Language for the
ZiSIOE NS PRt it NS IS SO

"Teach Yourself Assembler Z80".
Century Communications, London, 236 p.

"Assembler Routines for the Z-80".
Century Communications, London, 192 p.

"Microcomputers and Microprocessors:
the 8080, 8085 and Z80. Programming,
Interfacing and Troubleshooting".
Prentice Hall, 670 p.

"The Z80 Microcomputer Handbook"
Howard Sams, 304 p.

"Level II ROMS"
Tab Books, 536 p.

"Inside Level II"
Mumford Micro Systems, 65 p.

"TRS-80 Assembly Language Subroutines"
Prentice Hall, 232 p.

"Z80 Code for Humans"
CiErmEeE , 152 o).

Oee,
Jan.
Nov.
Nov.
Feb.
Mar.
Apr.

May

Jun.
Jul.
Mar.
Apr.
Jul.
Jul.
Aug.
Aug.
Aug.
Apr.
Aug.
Aug.

Nov.
Nov.
Sep.
Sep.
Oct.
Nov.
Nov.

Nov.
Nov.
Dec.
Feb.
Feb.

Feb.
Mar.
Apr.
Apr.

Apr.
Apr.
Jul.

May
May
May

Aug.
Aug.
Sep.
Oct.
Oct.
Nov.
Nov.

VIS ERINNES
83 APC
84 APC
83 APC
83 APC
84 APC
84 APC
84 APC
84 APC
84 APC
84 APC
84 ETI
85 ETI
84 BB
84 M80
84 M80
84 M80
84 M80
85 APC
85 APC
84 APC
84 APC
84 APC
84 Cx
84 BB
84 ETI
84 APC
84 APC
84 PCG
84 PCG
84 BB
85 APC
85 APC
85 ARA
85 CIx
85 PCG
85 APC
85 APC
85 APC
85 APC
85 APC
85 ETI
85 APC
85 APC
85 APC
85 APC
85 APC
85 APC
85 APC
85 ETI

52,4
20-21
57,9
89-95
140-1
42-3
7 il=2

15=6
67
129-30
63

117

56

3-4

2

9,15 ,16
3-4

97

3 il

94

76

125

19

63
L35=7
L25=6
208-12

55-56
suppl.
64

171
20

19-26
12-14
62-64
19

103
95
176
52=3
99-101
110
130
130-3
145
218
147
189
94-5

BASIC program conversion. (Surya)

Beginners tips.

(White)

Program conversion Pt. 2 (Surya)
BASIC converter chart. (Surya)

Program
Program
Program

Program
Program
Program

conversion
conversion
conversion

conversion
conversion
conversion

More functions for
Notes and errata for Olney.

Some more routines.

Pt. 2 (Surya)

Apple II (Surya)
- TRS 80/System 80
(Surya)

Atari (Surya)
Sinclair (Surya)
- BBC (Surya)

the VZ-200. (Olney)

(Middlemiss)

VZED - three new functions.
VZ-200 output latch.

Memory peek VZED.
Microsoft ROM BASIC Level I bug.

VZ-200 bug.

VZ bug.

(Carson)

(Tritscher)
(Tritscher)

VZ-200 moving message and trace.
(Batterson)

Trace function.

VZ-200 correction.

VZ200 Input.

(Breffit)

(Kelly)

(Woolf)

Poking extra functions. (Clark & Hill)
Extending VZ-200 BASIC. (Olney)

TRON/TROFF function for VZ-200.

MON-200 machine code monitor.
(Stamboulidas)
Lprinter. (Quinn)
VZ-200 reverse video.
Enlarged characters. (Velde)
BASIC understanding. (Hobson)
VZ-200 into puberty - Olney’s

extended BASIC.

Calculating grey line. (Baker)

Renumber.

(Marsden)

Find. (Stamboulidas)

Use of RND in dice and card games.
(Holland)
VZ variable definition. (Stamboulidas)
Variable GO TO on VZ. (Olsen)
Correction to VZ variable GO TO.

Lysco support for VZ-200. (Young)
VZ-200 hardware interrupt. (Olney)

Background VZ.

(Williams)

VZ-200 instant colour. (Willows)

Reversed REM.
Real-time clock.

(Quinn)
(Griffin)

APC benchmark BASIC programs.

VZ deletions.

(Quinn)

VZ EDITOR/ASSEMBLER tips. (Lam)
Olney’s Level II BASIC for VZ200/300.

(Rowe)

(Thompson)

Page 2

—_~ e~~~ —~
[\SIN NSNS I\ I B \V]
—_— — — — — —

Il PP RPN EPN -

e e et e e e e e e e
— N N e e N N N N N N e

e e e e N
L T e e B . T I S i
S N N N N N N N N N N N N

[\S]
~

Jan.
Feb.
Mar.
Mar.

May

Jun.
Aug.

Oct.
Sep.
Oct.
Oct.
Oct.
@i
Nov.
Dec.
Mar.
Apr.
Apr.

May

Jun.
Aug.

Feb.
Jul.
Oct.
Oct.
Nov.
Feb.
Feb.
Nov.
Nov.
Jan.

86
86
86
86
86
86
86

86
86
86
86
86
86
86
86
87
87
87
87
87
87
88
88
88
88
88
88
88
319
319
89
89
90

APC
APC
APC

E
APH
APC
ETI

ETI
AEM
AEM
AEM
ETI
ARA

EA
AEM

AR

EA
ARA
AEM
AEM
AEM
BYC

ETI
JILIL
ETI
AEM
ETI
ETI
ETI
ETI
ETI
CBA

83,5
127
chart
103-5
54-55
209
86-89

28=3838
89-92
110-112
13,4, 21
47
38-42
85
90-95
10=12
100-101
20-24
86-88
74,795,719
82-83
88

70

74

124
96=97
120
118-119
119-120
73

73
17-19

VZ user graphics.

Machine language calls.

APC BASIC converter chart 1986.

VZ-200 cassette inlays. (Dutfield)

VZ and photography. (Kohen)

VZ pause.

VZ software mods. (CHIP-8 Editor)
(Griffin)

VZ CHIP-8 Interpreter. (Griffin)
Screen handling on VZ. Part I. (Kitch)
Screen handling on VZ. Part II. (Kitch)
Reference list of VZ articles. (Kitch)
Labeller. (Gallagher)

Amateur radio logger. (Johnson)
Speaker enclosure calculator. (Allison)
Memory mapping on VZ. (Kitch)

Feedline calculations. (Buhre)

Op amp noise. (Allison)

Beam Headings. (Baker)

VZ Epson printer patch. (Taylor)

VZ Epson printer patch Pt II.

VZ expanded EPROM. (Meager)

Restore file. (Banks & Saunders)
B-file copier. (Buhre)

String file name. (Hand)

Disk directory dumper. (Tunny)
CTRL-Break disabler. (Tunny)

VZBUG. (Batger)

Clock. (Tunny)

DOS Hello (Tunny)

Visisort (Sheppard)

Restore (Rowe)

Hex/dec conversion (Maunder)

Beam headings (Baker)

Page 3

NN N NN
N WOoo - -
—_— — — — — —

N TN TN TN SN AN SN N SN AN AN SN SN SN SN SN SN SN SN SN SN PN SN SN N N N
WP PPN PRP PP PP DO0OO0AND WO O, NS LS OW

e N N N N e U N N e N N N e N e e N e e e e e e

A BEGINNER'®

'GUIDE TO

PROGRAM CONVERSION

This month Surya provides some direction for those-trying to get to grips with
program conversion. Next month, hours upon hours of blood, sweat and tears will come
to fruition in the presentation of APC's Basic Program Converter Chart.
It's a compilation of the Basic keywords of popular micros set out to enable equivalent words
in your micro's dialect of Basic to be used in their place.

When you've just picked up your copy of
APC and spotted a nice little cassette-
based database for the TRS-80 it's very
tempting to sit down in front of your VIC
20 and start tapping away, altering lines
as you go and hoping that it will run
when you've finished it. Unfortunately,
while you can sometimes get away with
this on very short programs, anything
longer than twenty or thirty lines and you
quickly find yourself in a mess. The first
rule of program conversion is stop and
think! This brief article is not a definitive
guide to program conversion, “bit it
should give a few pointers to those
relatively new to the game.

So where do you start? Well, first of all
think about whether a conversion is
really the best approach to the problem.
Although modifying an existing listing
may sound easier than writing the pro-
gram from scratch, this is not always the
case. In choosing between a conversion
and a complete rewrite, there are a
number of factors to be considered:

(a) The compatibility of the machines.
Some machines support very similar
dialects of Basic: the TRS-80 and the
System 80 for example. In a number of
cases, the program may require only a
few minor changes here and there to
enable it to run on a similar machine.
You may even find that no changes at all
are needed.

Other machines, however, are almost
entirely incompatible. Converting from a
Commodore machine, for example, with
its cursor-control statements embedded
in the text, can be a real pain. Equally,
converting from a powerful machine to a
lesser beast may cause problems: a Basic
with recursively-defined procedures
(procedures within procedures) and
REPEAT-UNTIL loops can be very
difficult to rewrite efficiently for a
machine which doesn’t support a
structured Basic.

Although converting from a simple

machine to a more sophisticated one is
generally easier than the other way
around, you will be sacrificing the
features for which you bought the
machine. Any ZX81 listing will run on a
Spectrum, but then what's the point of
having a Spectrum?

(b) Sound and graphics.

However compatible machines may be in
other respects, they usually bear not the
slightest resemblance where sound
control and graphics resolution are
concerned. Where a program relies
heavily on these features, therefore,
rewriting the program from scratch
twould probably be easier than
attempting to modify it.

(c) Machine-code, assembler, PEEKs and
POKEs.

Any program relying heavily on
machine-code or assembler, or where a
significant amount of PEEKing and
POKEing is-done, will be extremely
difficult — if not impossible — to modify
for a different machine. Anyone who
knows enough about low-level program-
mingto do the job would almost certainly
be able to write their own routines in a
fraction of the time taken to convert
someone else’s.

}d) The structure of the program.

must confess a sneaking sympathy for
the view that ‘all that matters is that it
works’. When I'm writing ordinary day-
to-day programs for use around the office
or whatever, my programs are neither
elegant not structured. Having publicly
owned up to this fatal flaw in my
otherwise perfect character, I am now
going to sing the praises of structured or
modular programming.

Structured programming is the art of
assigning each component function of
the program a routine of itsown. Take the
example of a simple database. there
would be one routine to display the
menu, anothertoacceptinput, another to
sort data, yet another to output data to a

printer. and so forth. Each routine. or
module is entirely independent of any
other. being called by a central ‘control’
module. You could, for example, remove
the printout routine simply by deleting a
solid chunk of code and deleting the
option from the menu. The rest of the
program would be totally unaffected.

A well-structured program is not only
easy to read and edit. is also lends itself to
modification for a different machine. If
(say)the bar-chartsectioncannot be used
on your machine because of the difference
in screen-addressing. you can simply
replace it with your own routine without
necessitating all kinds of changes in
other sections of the program.

If a program is very badly structured, it
is often easier to write your program
rather than wading through GOTOs,
attempting to follow a logical path which
jumps in and out of loops and so on, and
altering one part of the program may
have unforeseen effects in a completely
different part.

(e) The program as a whole.

Does it do exactly what you'd like it to, or
merely approximately what you want?
There’s little point in modifying an
exciting program if you're then going to
have to spend a lot more time on it in
order to get it to do something else.

Do you understand the way the
program works? If you don't, then not
only are your chances of carrying out a
successful modification pretty slim, but
the program may not do what you
thought it would even if you succeed!

By this stage, then. you should have
decided whether you're going to modify
the program as it stands, or write a
completely new program of your own to
do the job. If you decide on the latter, it
doesn’t necessarily put you right back at
square one. The general structure of the
program may provide a good starting-
point, and you may also be able to
incorporate some of the routines into
your own program. Treat the original

Page 52

Australian Personal Computer

4 (10) p 52 a~d 54

—_—

—

A BEGINNER’S GUIDE TO
PROGRAM CONVERSION

program as a source of ideas and
techniques, but don't be limited by it.

Let's say you've decided on a conver-
sion. I'll identify the sections likely to
cause problems. PEEKs and POKEs are
an obvious place to start The author
should have added REMark statements
telling you what they do, and you need
only figure out how to achieve the same
effect on your own machine. If not. then
you're into the business of getting hold of
the host machine (that is, the machine
the program was written for) and trying
out anything you're not sure of.

Next to look for is the screen displays:
mainly graphics and PRINT AT
statements. These will probably have to
be completely rewritten. Work out what is
happening — what is being plotted and
where messages appear on the screen.

This can sometimes be tricky,
particularly where those quaint
Commodore control-codes are con-

cerned (you may have gathered that I

don't jump up and down about
Commodore screen-handling). Bear in
mind that you don’t have to duplicate the
original screen exactly or even
approximately — for menus and so on.
Generally, the only time when you need
to recreate the screen faithfully is during
games where the graphics are vital. The
difficulty of adapting such programs has
already been mentioned.

By now, you will probably have come
across several sections of code that
appear totally alien to the version of
Basic supported by your machine. In
these cases you must work out exactly
whatis happening, when., where, why and
how. Once you've done that (he says
lightly), it should be a straightforward
matter to replace the offending code with
your own routine. This is when you find
out just how structured the program
really is. I once followed a series of about
nine GOTOs, the final one ending on the
line following the first one with nothing

having happened in between. OK it's an
extreme example. but there arc some
funny people about . . .

Anyway. next on the agenda is to go
through the listing making note of
anything which looks slightly, rather
than totally. out of place in your
machine’s Basic. You'll find that most of
the chinges will be fairly obvious even if
you've never seen some of the keywords
before. Most people would guess that
HOME is the same as CLS. for example.
Next month. APC will publish its Basic
Converter Chart (which has been no
mean feat to produce) which should help
you sort out the stranger idiosyncracies of
some machines. i

If you're converting to a less powerful
Basic then you may have to work at
simulating some of the more sophis-
ticated features. FOR-NEXT loops come
in very handy to simulate functions such
as INSTRS, STRINGS and so on.

And this is the point where you start
hammering away at the keyboard!
Provided you've done all the above
thoroughly, a combination of the APC
Basic Converter Chart and good old-
fashioned trial-and-error should see you
through!

A Pc

Beginner’s tips

On reading the October issue

_As practical examples of obtain:
dlffere'nces, consider the open FILES
. follow.mg two examples: first, repeat
a routine to throw a die until readline (A$)
a six is thrown: print A$
repeat until eof

of APC, I noticed that Surya
made a very common error
in his "Beginner's guide to
program conversion'. He
_states that ‘(repeat-until and

while-endwhile) ... are two
fo{ms of the same loop, one
being the logical reverse of

the other.’

There is one essential
difference between while
<cond> and repeat
<block> <block> endwhile
until not (<cond>)

The ‘while’ form checks
the condition first. If it's
false, then <block> is not
executed even once. By
contrast, the ‘repeat’ form
causes at least one execution

DIE:=rd(l to 6)
print ‘You throw a’, DIE
until DIE=¢
This can be written as a
somewhat convoluted ‘while”:
DIE:=0 (indeed, any number
that isn’t six) o
while DIE< >¢
D!E:=md (I to 6)
print “You throw a’ DIE
endwhile
(a!though no-one but an
idiot would use this if they
| had repeat-until available).
Second, consider a routine
to print a sequential file:
open FILES
while not (eof)
readline (A$)

close FILES

the program.

Whereas the first form
correctly detects, when the
fxlfe is empty, that eof is true
initially — and so
Immediately closes the file,
the second form attempts to
read a line of text from the
empty file — thus crashing |

Therefore, to summarise,
any repeat-until may be
replaced by a while-endwhile:
— but with some loss of
clarity, but the converse is |
not true — attempting to
convert from a while-
endwhile to a repeat-until
does not usually work.

Yes, you are quite correct i
When converting from a while-
wend lo a repeat-until loop it is
Sometimes necessary o insert |
| manually a test which |
somewhat defeats the point of |
the loop! It is, however. usually
possible to make the initial test
bdo_re entering the loop, thus
retaining some degree of
structure. Thus:
OPEN FILES:IF NOT OF
THEN PROC readfile ELSE |
CLOSE FILES . .. |
DEFPROC readfile i
REPEAT .
RE4DLINE (43) |
PRINT AS$ |
. UNTIL EOF
| CLOSE FILES
- T'would however, agree
wholeheartedly that a iruly
structured language should
offer both constructs,

of <blOCk>‘ even if the print A3) |

co\r;;ihition is initially false. 2;:) dw}g}iEs Duncan White Suga ——
erever a * = T se

used, it may, ifr(?g:i?;;ngg S (eof is a boolean (true or

replaced by a ‘while- false) function indicating APC

endw.h.ile with inverted whether or not the End Of 2 o

condition (although there are File marker has been p. A0 & 421,

several cases where a ‘repeat-
until’ is more natural —
which is precisely why any
decept structured language
provides both constructs).

encountered. Any attempt to
read a line of text when eof
1s true will probably crash
the routine). Using the
Surya-style conversion, we

A BEGINNER’S GUIDE TO PROGRAM CONVERSION

PART 2:SIMULATING STATEMENTS

Lastmonth Suryalooked at the factors to consider when choosing between aprogram conversionand a
completerewrite. Here heassumesthata conversionis appropriate and analyses the procedure in detail.

The initial steps to be taken when
converting a program from one dialect of
Basic to another are much the same as
when coding from scratch and just as much
discipline is required. The starting point in
either case is to have aclear understanding
of what you’resetting out toachieve. Make
sure you can follow the logic of the
program before you attempt to modify it.
Spend a little time working out why the
author has done things in that particular
way. All this may seem unnecessary at
first, but it’s time well spent: the greater
your understanding of the program. the
easier the conversion will be.

Once you're satisfied that you have a
clear overview of the program as a whole,
you can look at each section in detail.
Break the program down into its compo-
nent subroutines. Thisis only possible with
a reasonably structured program, but as
mentioned last month, programs with poor
or non-existent structuring are best left
alone.

When examining each routine, take a
special look at the variables. Determine
which are global and which are local.
Global variables are those used through-
out the program. Typical global variables
.include scores in games, some counters,
printer-settings and so on. Local variables
are those whose values are used only within
a given subroutine: once the routine has
been exited, the values are no longer
required and the variables may be used for
adifferent purpose withinanotherroutine.
Typical local variables are counters in
FOR-NEXT loops and flags used to check
validity of data.

The reason you need to distinguish
between the two is that local variables may
be freely changed or discarded as appropri-
ate, but global variables need to be treated
withagreat deal of care— the programasa
whole is dependent upon them. If you're
lucky, the programmer will have gone to
the trouble of listing all global variables in
remarks at the beginning of the program,
and used fixed local variables so that, for
example, w is always a FOR-NEXT loop
counter. Failing that, there are utility
programs available that will locate vari-
ables for you.

Coding

(Note: in the examples given below, I am
using A$ to represent any string variable

and 100 onwards whenever line numbers
are required. These choices are purely
arbitrary and have no significance.)

During the process of converting a

program from one machine to another,
you will verv often come across a keyword
in the original program for which your
machine has no equivalent. While experi-
enced programmers will soon find a way
round the problem, those a little newer to
the game may find themselves stuck for a
solution. What I have done belowistolook
at some of the common offending state-
ments and methods of achieving the same
effect using standard Microsoft. The
keywords covered are not in any particular
order.
INKEYS: This statement is an almost
statutory presence in just about every
Basic program ever written. This state-
ment tells the computer to scan the
keyboard to test for a key depression and
place the result into a specified variable.
The standard format is AS=INKEY$; the
most common variations are AS=GET$
GET$=A$ and GET AS.

The statement takes one of two forms.
On most machines, the processor will carry
outasinglesweep of the keyboard: if a key is
pressed during this scan, the value of the
key pressed will be placed into the variable
AS. If no key is pressed, A$ will be null
(empty). On some machines, however. the
computer will carry out a continual series
of sweeps until a key-press is detected. A
few machines offer both forms.

A continuous scan using the former
version of INKEYS is straightforward:
100 AS=INKEYS$:IF A$="" THEN
GOTOI100. The BBC, however, goes a
step further in offering a timed keyboard
scan in the form AS$S=INKEY$(time),
where time is given in 100ths of a second.
To simulate this using the standard
INKEYS$ statement, we use a FOR-NEXT
loop thus: 100 FOR A=0 TO
(value):A$=INKEYS$:NEXT. The value
of the variable will need to be adjusted to
suit. Since different machines have
different processing speeds, you'll have to
experiment with different values to
establish some kind of relationship
between the value of the FOR-NEXT
counter and real time.

Of course, the example given above
would return the final key pressed if there
were two or more key depressions during
thescan period, but thisis easily overcome:

100 FLAG=0:A%=""

110 FOR A=0TO (value)

120 B§=INKEYS$:IF NOT B$=“" AND
FLAG=0THEN A$=B$:FLAG=1

130 NEXT

The value of the first key depression is
now stored in AS. If no key was pressed,
then AS will be empty.

INSTR: This statement is used to search

one string to find out whether it contains a

second string. The format is INSTR(main

string, sub-string) where the starting

position of the sub-string isreturned on a

successful match and 0 is returned if the

search fails. INSTR("APC","P™) would
return 2 while INSTR(*"APC","X") would

return 0.

We might, for example, want to find out
whether NAMES contains the sub-string
‘Rev.. Using INSTR. we would do this
like so:

100 IF NOT(INSTR(NAMES."Rev.")
=0) THEN PRINT NAMES:;" is a
priest”

To simulate this in standard Microsoft,
we use MIDS. In the above example, we
would do so thus:

100 FLAG=0:FOR
(LEN(NAMES$)4

110 IF MID$(NAMESA 4)="Rev.”
THEN FLAG=I

120 NEXT

130 IF FLAG=1 THEN PRINT
NAMES$"is a priest”

Note that on an Atari, line 110 would
read as follows:

110 IF NAMES$(A4)="Rev.”
FLAG=I

and on a Sinclairmachine, it would read:

110 IF NAME$(A TO A+4)="Rev.”
THEN FLAG=I

These differences are due to the non-
standard forms of MIDS$ supported by
these machines. The original example
should work on all other dialects of Basic.
PROCEDURES AND FUNCTIONS:
User-definable tunctions are supported in
varying degrees of sophistication by a
number of machines. Procedures and
functions make programs infinitely neater
and more readable, but they don't actually
achieve anything which cannot be
duplicated using ordinary sub-routines.

Some dialects of Basic will allow you to
GOTO or GOSUB a variable which
greatly aids readability — the Basic
Converter Chart will tell you which
machines do if you look under GOTO.

A=] TO

THEN

Australian Personal Compyger Page 57

Nov 3y a(n) p £ sdsq

loc-z

REPEAT-UNTIL and WHILE-WEND.
These are two forms of the same control
loop, one being the logical reverse of the
other. WHILE-WEND checks that a given
expression is true and then executes all
statements up to the first WEND state-
ment encountered. The computer then
returns to the original condition to check
whether it is still true. If the condition is
false, the statement following the WEND
statement is executed.

For example:

100 REM — Silly example

110 X=10

120 WHILE X>0

130 PRINT “The current value of X
=X

140 X=X-1:WEND

150 REM — Xisnowzero and the WHILE
test fails

In a WHILE-WEND loop, the loop is
repeated while the test expression is true.
A REPEAT-UNTIL loop works the other
way around. All statements between

A BEGINNER’'S GUIDE TO
PROGRAM CONVERSION

REPEAT and UNTIL are executed until

the test expression is true. Thus the above

example would be written:

100 REM — Same sillv example

110 X=10

120 REPEAT

130 PRINT “The current value of X
=X

140 X=X—-1:UNTIL X=0

150 REM - X is now zero and the
REPEAT test is satisfied

Converting from one structure ¢b the
other is thus straightforward. But the
majority of present-day Basics offer neither
of the above. To create the same effect, we
have fo use a statement that causes
purists to gasp in horror and head
straight for the reassurance of their
micro: the GOTO.

Thus:

100 REM — Here we go again

110 X=10

120 PRINT “The current value of X

=Y.
= ’X’YY'YV

130 IF X>0 THEN X=X-1:GOTO120
140 REM — Xisnowzero and the test fails

While somewhat less elegant, the net
result is the same. We can see that
rewritinga WHILE-WEND orREPEAT-
UNTIL structure is simply a matter of
manually inserting the test (using IF-
THEN) and pointer (GOTO).

STRINGS is a statement which allows you
to repeat a given sequence of characters.
The format is STRING$(number of times
to print string,string). If you wanted to
printalineof asterisksacross an80-column
screen, for example, you would state:
STRINGS$(80,*”). If your machine
doesn’tsupportthisstatement, thenwefall
back once again on the ever ready
FOR-NEXT loop. Thus: FOR A=1TO
80:PRINT“*”;:NEXT, the stringis simply
duplicated, and the numeric argument
placed in the FOR-NEXT loop.

TAB. This is supported by most machines.

Next month: Graphics and sound

END]

APC Nov %3

One day, all computers will understand the same
language (and read each others’ disks and address the
screen in the same way and. . .). To tide you through
until this great day arrives, however, we set out to
beg, steal or even buy eleven of the most popular
home micros to produce this APC Basic Converter
Chart.

Whether you're trying to convert that amazing
Atari game to run on your Apple, have just spent the
past three hours wondering why your new
Commodore 64 micro doesn’t seem to give the right
answer to a FRE statement or simply want to write
programs which can be easily converted to other
micros, the APC Basic Converter Chart is here to
help. -

Itisn’t possible, of course, to cover every micro nor
every command supported by each of the machines
included — much as we’d like to. Also, since different
micros have an annoying tendency to use the same
keyword to perform slightly — or totally — different
functions, converting from one machine to another
will require some rewiting beyond simply changing
the syntax. What this chart aims to do, however, is
provide you with an at-a-glance syntax comparison
using Microsoft Basic as the standard. The chart won't
convert programs for you, but it should save you the
trouble of wading through masses of manuals written
by authors who have apparently not yet heard about
alphabetical indexing.

Due to the limited amount of information we can
squeeze into each box, it hasn’t always been possible

to indicate the full power of every command or
statement. Most LIST statements, for example, allow
you to list the whole program, list a specified line, list
all lines within a given range, list all lines up to a
specified line or list from a specified line. Fiddling
around with brackets in an attempt to represent each
of these possibilities would lead to a totally
incomprehensible entry. It should be assumed,
therefore, that we're dealing with the most common
use of each statement here and that other uses may be
available.

Something to be aware of is that identical syntax
may have very different effects on different machines.
SYSTEM on a TRS-80 will transfer program control to
a machine language routine while in Microsoft Basic
closes files prior to returning to the operating
system.

You will notice that we haven’t included anything
on sound and graphics; with most of today’s micros
offering both high-resolution graphics and fairly
sophisticated sound control, this area would require a
chart of its own. APC will be looking ot sound and
colour in a later issue.

The abbreviations used in the chart are as
follows:

addr = address, exp = expression,

sub = subscript, stmt = statement,

var = variable,

Square bracket [] indicates optional code.

Australian Personal Computer Page 89

loc-’]‘

STANDARD ABS ASC ATN AUTO QAlLL CHAIN CHRS CLEAR CLOSE CONT €0s

MICROSOFT
Retums ASCH Calts sssembler Coll 8 new Gives one-char- Closes disk fles
Gives sbsoluty walue of first Arctangent of language sub- program & pass string with ASCIl Clear-selectsd —closes of files | Contnese program Cosine of
I vake of e, cumw of g spaion routie. et 0 codeof op. vesrisbies ¥ o ek 5 prassion,
MACRINE ABS{ axp) ASC(string) ATN(axp) AUTD [lineno, CALL vef(var. CHAIN CHRS(exp) CLEAR{exp. CONT COS(exp)
|
| ABS{0xp) ASC{ string) ATN(exp) CALL add: CHAIN CHRS(oxp) CLEAR CLOSE “fename’| CONT C0S(exp)
APPLESOFT -
ABS{axp) ASC{ string) ATN(exp) RUN“C:" NB: CHRS oR CLOSE [# fieno. | CONT COS{exp)
program must fileno . .)
ATARI heve bow vl
| using SAVE “C”
ABS{uxp) ASC| string) ATN(oxp) AUTO [bneno. CALL addr CHAIN CHRS (0xp) CLEAR CLOSE # fieno cos(og)
vl [varvar...] “flename” NowCLOSE #0 '

| BBC MICRO - S

' ABS(sxp) ASC(string) ATNexp) SYS(addr) CHRS(exp) CLR(exp) CLOSE fileno CONT COS{ exp)
COMMODORE 64
ABS(rest-axp) ASC{string) ATAN(reak-xp) AUTO (Bmeno. M:(hm- STRS{int-exp) CONT COS{rmak-exj
el o) Note: set hmits .
MICROBEE for s
mmmory
l i
l ABS{ exp) ASC(string) ATN(exp) SYS{widr) CHRS{0xp) R CLOSE Sleno CONT COS(axp)
PET
ABS{ exp) AS(string) ATN(exp) AUTO [Gmena. CHRS (exp) CLEAR(exp) [depands oa 0S: CONT COS{exp)
wl] Now Cmenx sty consctt 05

| TRS'BO/SYSTEM 80 space if exp manual]

ABS| exp) ASCisomg) ATMeg) SYS wdde oRsip) O CLOSE #feoo CONT COS{sp)

| ic-20

ABS{ exp) ASC{ string) ATN(exp) CHRS{exp) QEAR(sxp] N CoNT 00S{exp)
s vy

| VZ200 oce

l ABS{exp) COOE{ string) ATN(exp) LET ver & USR CHRS(0xp) Now CLEAR WA — D81 CONT COS{axp)
Now 231 dam v (oddr) Now: DB1 doss not does pot
code [[

|

[ABS| e) CO0E{etmg) ATM(exp) LET ver » USR ORYup) CLEAR Conmit CONTNUE COS(ug) |

(adds) Now: Meraiive i
|

IX SPECTRUM . - h

|

1 age 90 Australian Personal Computer

2 sf 7.

Alocatss spece ¥ oo i ma ot

Uets data 1 be for amays. Used with NEXT Bronck 10 2 owcvad. I not
"wed in g READ Defirw astrwic Do mocied xpecifis max Edit a program Stop progam & Raises to power 10 repest a Rvturs ey Read 2 record,. Branch 10 2 Besc spcifad ne BSE or (kweig
statonent. string function program lines. abxat vihax ine. wum 0 BASKC of expression soam of et memory spece. fom dik or by submutine. rumber. o s emeed
DATA const DEF FNvar DELETE Sneno DIM var{sub), EDMT fneno END EXP{axp) FOR ves » &xp TO FRE(exp) fs GET [#] 8 GOSUB kwno GOTD Eneno F op THEN somt
[eonst. ..] [(varvar...)] [lineno) [vadsub), . .) op [STEP oxp) no [.record no) [ELSE stmt)
sop
DATA CONST DEF FNvar DEL linen, DIM var(sub) [scren oditng END EXP{exp) FOR var « oxp FRE(exp)Now: INPUT ver GOSUB lmena/ 60TD beno If exp THEN stmt
[.conat . .) (var) o 0xp fineno [vadsub) . . .] umig CTRL koys] TO exp opiaadummy [var...]NB: wr/axgp Note: no ELSE
variable ot vae{3) from
-t rput Vo
DATA const DM [or COM] ver [cursor oditing) END EXP{oxp) FOR vor @p TO FRE(exp) Nots: GET # fisna, GOSUB knena/ 6OTD Gnena/ ¥ op THEN smt
[.const . .) (sub) [,ver (sub) op [STEP ap] wp is & dummy mcond vai/op var/vmp Notx no ELSE
. . .] NB:dim'sion wariable
ALL strings
DATA const DEF FNvar [(var. DELETE fneno. DIM Var{sub) [cursor oditing] END EXP{oxp) FOR wer 2 oxp TO HIMEM-TOP PPUT # Gana GOSUB linend/ 60TD ena/ F op THEN swmt
[.omst. .] var)] 2 0 neno [ivar(sub) . .] op [STEP xp) mcond va/exp wt/op [ELSE stmt)
[.rocond . . .]
DATA const DEF FNvar DIM var(sub) [cursor editing] END EXP{exp) FOR vor « 0p TO FRE(exp) Note GET #fenc, GOSUB lineno 6OTD fineno F exp THEN semt
[const. .] aexp [ver(sub) . .] op [STP ep] opisadummy mcod [record Note: no ELSE
” variable)
o 0ATA oqr (o FNn z oxp DELETE Smerc. DIM var(sub) EDIT (linevo.) END EP (nahoxp) FR waep O FRED) mem G0SUB NB 3q GOTD imeno F op THEN somt
) (Frama) (e b)) o (STEP op) spmce FRE(S) . br. sigifeant (ELSE stmy)
pacy
DATA const DEF FNvar DIM var{ sub) [cursor aditing] END EXP{exp) FOR vrz op TO FRE{ep) [TRS- INPUT # fna GOSUB lineno 607D nemo F op THEN st
[eanst...] (var) « 0xp) [vedsw) . .) op [STEP op] 80) s 2 dwwy mocd Notr no ELSE
veriable [.rocord . .]
DATA const Various DEF DELETE fneno- DIM var{sub) EDIT fneno END DXP{exp) FOR verc 0p T0 FRE(op) [[RS AUT # o GOSUB bineno 60TOD foem FF o THEN somt
[const] stataments fneno [versud) . .] op [STEP op] 80) or MEM mcord [ELSE stm)
svalabin but pone [System 80] [.rocond . .]
squvalent
DATA const DEF F¥{var) DIM var{ sub) [cwsor sditing] ENO EXP{exp) FOR vor: @p TO FRE{op) Noix GET # fleno, GOSUB lnenc 60TD wno F op THEN st
[eonst..] -emp [var(sub) . .) o9 [STP €p] o is » domary mcond Nax no ELSE
veriable
DATA const DIM var{sub) END EXP{axp) FOR vesep TO NPT # @ GOSUB kneno GOTO LNENO F oxp THEN rimt
[.const . .] [ver{sub) . . .] op [STEP axp) e i .] o [ELSE st
N8: Geots record /o
from tape
DIM var(sub) ED(T Nots: use EXP{exp) FOR ver z @p TO GOSUB UNENO GOTD LNENO F op THEN st
arsy 0 st op [STEP exp) w/ep vet/exp Notx ao ELSE
ne
DATA const DEF Flver DIM var{ sub) EDIT (lineno) EXP{exp) FOR wer s ©p TO Consult GOSUB linna/ GOTO lnena/ F o THEN st
’ [const...] [(varwr...)] Nox cursor fine op [STEP op) Micyudive w/op w/ep ot no BLSE
- op by default menal

Australian Personal Computer Page 91

Novey 4ln) $9-9s5
3 ot 1.

BASIC RESERVED W

STANDARD INXEYS INPUT INT LEFTS LEN LET LIST LLIST LOAD L0G MiD$

MICROSOFT Peter chuacr Evahuates Retusvs. specied , [V—
typed at krybad opassion for | na of denean st specfed | List specifed o dwaras
or nuil if mo Read data from | largest tager | stactig ot begin- | Gives decmal | Gives 8 value to | program lines at | program lines at | Losd a program | Natural logarithen | Sght of stay,.
charsctar typed. | wrminal contained. ning of sting. | length of string. | & variable. wominal printer, file im0 memory. | of expresson | powln in sty
INKEYS | INPUT [STRING;)| INT(exp) LEFTS(string. | LEN (string) (LET) vaaexp | st [lineno, | LUST [nena | LOAD L0G{exp) MIDS{string,

MACHINE wr (..) length) _ - neno) fneno] [“filnamre™) [\ength])
GET VAR INPUT[STRING.) | INT(exp) LEFTS (string) | LEN(string) [LET) var » & | UST [Linwno, | [depends on LDAD RLENAME | LOG{sxp) MIDS{string.

APPLESOH’ VAR VAR ..) LENGTH) m:- u:‘ : ...mm 5 sacf oo

place of *’ usually UST'P)
INPUT [xp) var | INT(exp) * sting (stat | LEN(string) [LET] varaexp | UST [bneno, | UST P QoA "B+ |L0G(exp) strng(stat
ATARI .-) or gt irenc) ree Jeos) o (o)
INPUT [0p) . L0AD ~Sangr fe-
string-var rame” (disk]
GET var [undovadad| INPUT [strog | INT(axp) LEFTS(string. | LEN(string) {LET) vaeaxp | UST (oo~ [CTRL-B than LIST| LOAD “Rename |LN(axp) NB: | MUDS{string,
BBC M|CR° tima] or INKEYS | []] var [.var length) kneno) [Kneno-tineno] | Notr “*DISK or |LOG(exp) gives | star length])
(tme) Nots: | "*TAPE © select | common rather
100ths sec. dva than natural log
GET var INPUT [sting:] | INT(axp) LEFTS(string, | LEN(string) [LET) woe = & | UST [bnano- | OPEN 44; L0AD [“Se- LOG{exp) MIDS{ string,

COMMODORE 64 i) i il Rl e e bt

8 [dist]
KEY INPUT (stong) | INT(reat-exp) var(;1, length) | LEN(string) (LET) vareexp UST (inena. LUST (lineno. LOAD (V) (?) LOG(real - axp) \'(;Mm-l).‘
MICROBEE ver (,var) LET cbigatry | (. linena)) (inena)) (" Rimnams”) -o-start chao
sftr THEN and LOAD U m-length
ELSE forculoads
GET var INPUT [STRING, | INT(exp) LEFTS (sting. | LEN(string) [LET] var » 0xp | UST [Lineno- | OPEN 4.4: LOAD("is- LDG{oxp) MIOS{ string,
PET v [hngth) nana) CMD4: UST | rama”] [cams] or starq, Jongth)
[rwno-finang) LOAD B,
8 (6t
INKEYS INPUT [string:) | INT(exp) LEFTS(string, LEN stng) [LET] wor « &p | LIST [bneno- LUST (Lineno- | CLOAD TS~ LOG(oxp) MIDS(string,
mso/mm 80 vor [var. .] length) fneno) fneno) rave]” (cass] o start, longth])
LOAD “Swwre”
[dask fappy tapu)
6ET var INPUT [sting:] | INT(ep) . LEFTS{string. | LEN(string) {LET] wre &p |UST [insno- | GPDGA:CMD 3: | LOAD ["Re [LOG(oxp) MEDS string,
VIC‘20 vr ..] hgth) neno) UST [ineno- | e Jooes) o stac{ ogth])
fnenc) . | LDAD “Semwwa”,
8 [dat]
I INKEYS MUTlarg] | NT(eg) LEFTS (cting. | LEN (stig) | [LET) var « axp | UST [imeno- | LUST [kmmno- | CL0AD [“Bie- |LDG (exp) MIDS (string,
YZ200 v far. .] ongth) nena) fnena) nons’] start [.lon])
NIEYS WAUT WT(eg) sting(T0 finish) | LEN(string) LET ver e axp | UST [Gneno) | LLIST [ineno] | LDAD Nap) sringlstat T2

Ix81 : R v

NIEYS INPUT [sting] | INT(og) string (TO fnish) | LEN(streng) LET var = oxp | UST [fnang) LUST [Grmao) LOAD “Swwwe” |LN(exp) strog(srt TO
‘ IR Notx:] ?
SCROW? ol for sk

Page 92 Australian Personal Computer

Nov 4 Q(H) ¥q-9s§
4 oF 7

Peed from data

Dvists curmnt G0TD nero apec- GOTO frwno apec- Put spaciliad by Resd bym fom Put specliad by St
: poyen & dsa End of Eror trap fed by rahmtin Hied by evehaton © sgpdfed owpt smcfed memory 1 specified -. Writ deta to disk | Resst random specified
;,‘ Renare 2 fls. from memory. FOR/NEXT loop. brouts of exprassi of express Open disk fle. poct. location. menoy addesz file. ruThs gwwwty. vrables.
NAVE “Gwarrs” NEW NEXT var ON ERROR On oxp GOSUB On oxp GOTO OPEN mode [#] OUT portbyts PEEK (sék) POKE aiibyw PRINT ([#] | RANDDMZE READ var
AS “femm” [vee ..) 60T0 Bneno neno ineno oo “Serome” fileno] (exp) [oxp) [var...]
[lineno . .] [lineno . .] [om..]
FRENAME NEW NEXT [var, ONERR GOTO On exp GOSUB On exp 60TO OPEN fname PEEK(addr) POKE addrbyte PRINT exp READ var
oldname, var. .) lineno neno neno [ep...] N8 [var. .]
neEwname [linano . .] [lineno . .] pv 0 cnet
outpt devics
NEW NEXT var TRAP lineno/ ON op GOSUB ON XP GOTO OPEN #fem [not equivalent] PEEK(addr) POKE oddr,byts PRINT #fienc, RND{-exp) READ var
var/axp neno ineno made corl cade, record [vee ..)
[lineno . .] [ineno...] filename [.record . .]
NEW Nowc wder NEXT [var, ON ERROR stmt ON exp/var ON oqy/ver S0~ OPENIN ?adk NB: 7 does 7addr,byts PRINT #8omme, RND(-0xp) READ var
ot drosm may ver. .] GOSUB nero GOSUB frero [10 read] or flwno- NOT mean ‘pant rmcord [var ..)
be recoverad [lineno . .] [Nneno . ..] OPENOUT [to in BBC Basic [.record. .]
using OLD wiitn)
OPEN 1,815, NEW NEXT [var, ON oxp GOSUB ON wxp GOTO OPEN # axp PEEK(sdd1) POKE ADOR, PRINT #flana RND(-T)) READ var
“RO: fwrwme- vr. .) kneno neno fileno. mode, BYTE rcord [var ..]
filaname’ [disk [lireno . ..] [Kneno...] “fleame” [.recodd . .]
onky]
NEW NEXT var ON ERROR GOTO ON exp GOSUB ON exp 60TO OUT jotbye PEEK(address) POKE addrss, PRINT fist READ ((lineno.))
NEXT *ver frmno. lineno. (e, op)))emno neno (,Bnenc.) byts var(, var)
-mits oop belor (([oxp . ..
completion
RENAME NEW NEXT ON oxp GOSUB ON oxp 60T OPEN #ex PEEK(addr) POKE addrbyte PRINT #fienc. RND(-TI) READ VAR
[fiena,] [varvar. .) nsno [ero frano [, ineno mode, “filename” mcord [ver..)
“oidname” TO | | Se mode [.record . .]
- .
[deperds on OS; NEW NEXT (ver, ver ON ERROR GOTO ON wp GOSUB ON EXP GOTO [depards on 0S; OUT Portbyts PEEK(addr) POKE addrbyts PRINT #-fieno, RANDOM READ var
anmdt 0S N lineno lineno Ineno consult 0S mcord [var..]
manaal] [Nneno . ..] [knenc...] manval] [.ecord . .]
[eass]
NEW NEXT [ver.ver ON cp GOSUB ON ep 60T0 OPEN oqiiena PEEK(addr) POKE addrbyle PRINT #flena, RMD(-T)) READ var
[.lineno . . .) [lineno . .] [.rocord . .]
NEW NEXT]var] OUT port by PEEK(addr) POKE addrbys PRINT#“fisama” READ vod ver . .]
opep ..)
N8 pats 10 tape
NEW NEXT var PEEK(addr) POKE addrbyte — RAND{0xp)
NEW NEXTvar OUT postbyte PEEK(adds) RANDS exp) READ ver
Microdrive (v
manual

Australian Personal Computer Page 93

Novta a(n) sy-498

S'of-7.

MICROSOFY Used 1 inswt Reaets parts © Fetum ¥om Rvtum from s Atums specied Retvrrs
cmments on a focits -neing ON ERROR ad- moutie o s o of dwacan Swapumman 1ifexp a0 Sine of
Fogram whioh e Change progam of DATA oure 0 st mant fdowig et strtig o ond of Genwates 8 e owdk OQifexp.0) CPVSGN
e g e umbers. statemants. thet coumd wwr. GOSUB emosd string random number. Ewnte » pugmn tape. -1 d wp <0 inRadans
REM text RENUM [fmma, RESTORE RESUME RETURN MGHTS{sbing RND{exp] RUN [neno] SAVE Rnswe SGN(sxp) SIN(exp)
w] gth) - C
‘ MACHINE
REM mxt RESTORE RESUME RETURN RGHTS(sbing ~ RND(exp) Notx: RUN [linenc) SAVE snmre, SGN(axp) SIN(exp)
bngth) op & 2 demy feno
APPLESOFT wrade
REM text RESTORE [frmno) RETURN sngst) N8 RND{exp) Notx: RUN CSAVE “Swwrs” SGN{axp) SiN(exp)
| not strictly op is 2 dureny [cass] or SAVE
(disk]
REM text AENUMBER RESTORE(axp) RETURN RIGHTS(sting. RND{exp) RUN SAVE “Aewme” SGN({exp) SIN(exp)
[start] length) Note: see nots
BBC MICRO (mare] wnde LOAD
REM wxt RESTORE RETURN RIGHTS(string, RND{axp) RUN [neno] SAVE ["Fie- SGN(exp) SIN(exp)
longth) rums Y cass] or
COMMODORE 64 SAVE ",
8 [disk]
REM wxt FEMUM (row-sat RESTORE (Grmm) RETURN vor(;LEN(var}-n-1) RND RUN SAVE “Swwms” SGN(makexp) SIN(mak-exp)
(.rouran (,stat- -n - membwr of - 300 bpi
MICROBEE o, fnish dwwn g SAVEF “flrmr”
m)))) -1200 bpi
REM mxt RESTORE RETURN RIGHTS(sting. RND{axp) RUN Save("fleame”] SGN(exp) SIN(exp)
bngth) [cass] or SAVE
| per Pk
8 [disk]
REM wxt RENUM Start. RESTORE - RESUME RETURN RIGHTS(sting. RND{exp) RUN [Linno) CSAVE “fwwms” SGN(exp) SIN(exp)
l inwivel Note: [Gnwno) length) [cass) o SAVE
TRS-80/SYSTEM 80 Sy 80 ol “Flcama” dak
foppy tape]
REM wxt RESTORE RETURN RIGHTS(sting, RND{ezp) Now RUN [UNENO] SAVE“Swwrw’, SGM(exp) SIN{exp
bngth) & s 2 dswwy arou code]{cass]
ViC-20 o SAE -
rome”, 8 [disk]
REM wmxt RESTORE RETURN R6HTS(sting. AND(ep) N8 RUN({nem) CSAVE"Swrma”) S5N{ exp) SIN(exp)
op) Nootedsd —
V2200 =20
sonual PS8
REM wxt RETURN sting{s TO) RND RUN [ineno/ SAVE “Rease” S5M{np) SIN(exp)
81 -
REM wmxt RESTORE { stimg{sp TO) RND RUN (frene/ SAVE “Bwwmw” SGN(ex) SIN(exp)
op) vet/exp) [cass] No:
ZX SPECTRUM Meraton
sanal bor disk

Page %4 Australian Personal Computer

Nov s4 4(n) $q-q5

o

7.

WHAE/WEND WIDTH

fms 3 sog of Comvertz Cals an zomrthe Gives numenc Emcm s
Stop program syucifnd brgh et cpasn Close flss for Tangent of longuage s> vehe of shing Swpwd progam mants m WHLE/ Sets printer
| Squme oot of et b sn ctEmy G- D2 Wi D Ay Opression in routine which of ASClI ecution for WEND loap 33 g/ sTEn
Xprags] d mode fied ch sting. system. mdant. Tracs off. Traca on wrrs oe vea. rusTber soucifed Sme. bgysepame width
R(exp) STOP STRINGS(lrgh, STRS(sxp) SYSTEM TAN(exp) TROFF TRON USR(parametsr) VAL| string) WAIT port, mek WHRE wp WEND WIOTH{exp)
l stng) [, 3olect]
1(exp) SToP STRS(axp) TANexp) NOTRACE TRACE USR(panmetar) VAL{string) WAIT ADOR. POKE 32, left
oxp [,0xp] margre POKE 33,
) ’ screen width
¢ SQR(exp) STOP STRS(exp) BYE NB: not USR(psametar) VAL string POKE 83, vl [t
. l oquivabt mergin]:POXE 83,
val [right
margin]
{ SOR(exp) STOP STRINGS{length, STRS(exp) *DISK NB: dak- TAN(exp) TRACE OFF TRACE ON USR(panmetar) VAL string) [no WAIT stot REPEAT stmt WIOTH el Mok
‘ string) tendirg dons but s0e INKEYS] UNTL oxp Nok 0-unliitad’
twough Basic so reverm logic
not true e
~QR(exp) STOP STRS(exp) TAN) USR(parameter) VAL{string) WAIT addr,
" 0p
QR(ekaxp] STOP PRNT [Anm] STR(sxp) TRACE OF TRACE ON USR(address VAL(sting-exp) PLAY 0, int ONE (e
-0« length of (, intager-exp)) (1(ing255; 1 - | < itprep < 18
: sng m « ASCH 1/8 sscond)
:} code of e
QR (exp) STOP STRS(exp) TAN(exp) USR(p2ametar) VAL smig) WAIT addr,
;‘ op.ep
3
i
SOR{exp) STOP STRINGS{length, STRS(exp) SYSTEM plus TAN(exp) TROFF TRON USR(parameter) VAL sting)
| sting) code following
prompt Nots:
not equivalent
> SOR(exp) SToP STRS(exp) TAN(0xp) USR(psamems) VAL sing) WAIT addr,
e
STRS(wxp) TAN(exp)
iR exp) sToP STRS(exp) AN exp) USR(sdd) VAL(emp) PAUSE ©p Mo
heits scren
*l dsplay only
i0R{ exp) STOP STRS(exp) TAN(oxp) USR addr VAL strirg) PAUSE no. of
o
! (50/ sscond)

Australian Personal Computer Page 95

Nov ¢
7

The initial steps to be taken when
converting a program from one dialect of
Basic to another are much the same as
when coding from scratch and just as
much discipline is required. The starting
point in either case is to have a clear
understanding of what you're setting out
to achieve. Make sure you can follow the
logic of the program before you attempt
to modify it. Spend a little time working
out why the author has done things in
that particular way. All this may seem
unnecessary at first. but it's time well

the program. the easier the conversion
will be.

Once you're satisfied that you have a
clear overview of the program as a whole,
you can look at each section in detail.
Break the program down into its
component subroutines. This is only
possible with a reasonably structured
program. but as mentioned in the
October issue. programs with poor or
non-existent structuring are best left
alone.

When examining each routine, take a
special look at the variables. Determine
which are global and which are local.
Global variables are those used
throughout the program. Typical global
variables include scores in games. some
counters. printer-settings and so on.
Local variables are those whose values
are used only within a given subroutine:
once the routine has been exited. the
values are no longer required and the
variables may be used for a different
purpose within another routine. Typical
local variables are counters in FOR-
NEXT loops and flags used to check
validity of data.

The reason you need to distinguish
between the two is that local variables
may be freely changed or discarded as
appropriate. but global variables need to

program as a whole is dependent upon

will have gone to the trouble of listing all
global variables in remarks at the
beginning of the program. and used fixed
local variables so that. for example, w is

spent: the greater your understanding of

be treated with a great deal of care — the

them. If you're lucky. the programmer

A BEGINNER’S GUIDE TO PROGRAM CONVERSION
PART 2:SIMULATING STATEMENTS

In the October issue of APC Surva looked at the factors to consider when choosing berween a program
conversion and a complete rewrite. In the November issue he followed that up with the Basic Converter Charn
and now he continues the series on the conversion of one Basic.dialect to another with the assumption
that a conversion is appropriate and analyses the procedure in derail.

Next month Surva will continue with a look at graphics and sound conversion.

always a FOR-NEXT loop counter.
Failing that there are utility programs
available that will locate variables for
you.

Coding

(Note: in the examples given below, I am
using A$ to represent any string variable
and 100 onwards whenever line numbers
are required. These choices are purely
arbitrary and have no significance.)

During the process of converting a

program from one machine to another,
you will very often come across a keyword
in the original program for which your
machine has no equivalent. While experi-
enced programmers will soon find a way
round the problem, those a little newer to
the game may find themselves stuck for a
solution. WhatI have done belowistolook
at some of the common offending state-
ments and methods of achieving the same
effect using standard Microsoft. The
keywords covered are notin any particular
order.
INKEYS: This statement is an almost
statutory presence in just about every
Basic program ever written. This state-
ment tells the computer to scan the
keyboard to test for a key depression and
place the result into a specified variable.
The standard format is AS=INKEYS: the
most common variations are A$=GETS,
GET$=AS$and GET AS.

The statement takes one of two forms.
Onmostmachines, the processor willcarry
out asingle sweep of the keyboard: if a key
is pressed during this scan, the value of the
key pressed will be placed into the variable
AS. If no key is pressed, A$ will be null
(empty). Onsome machines. however, the
computer will carry out a continual series
of sweeps until a key-press is detected. A
few machines otter both forms.

A continuous scan using the former
version of inkey$ is straightforward:
100 AS=INKEY$:IF A$="" THEN
GOTO100. The BBC. however, goes a
step further in offering a timed keyboard
scan in the form AS$=INKEY$(time).
where time is given in 100ths of a second.

—

To simulate this using the standard
INKEYS$statement, we use a FOR-NEXT
loop thus: 100 FOR A=0 TQO
(value):A$=INKEY$:NEXT. The value
of the variable will need to be adjusted to
suit. Since different machines have diffe-
rent processing speeds, you'll have to
experiment with different values to estab-
lish some kind of relationship between the

value of the FOR-NEXT counter and reaj _

time.

Of course, the example given above
would return the final key pressed if there
were two or more key depressions during
thescan period. butthisis easily overcome:
100 FLAG=0:A$=""

110 FOR A=0TO (value)

120 BS=INKEYS$:IF NOT B$="" AND
FLAG=0THEN A$=B$:FLAG=1

130 NEXT

The value of the first key depression s |;
now stored in AS. If no key was pressed, |

then A% will be empty.

INSTR: This statement is used to search
one string to find out whether it contains a |!

second string. The format is INSTR(main
string, sub-strin% where the starting
postition of the sub-string is returned on a
successful match and O is returned if the
search fails. INSTR("APC"."C") would
return 2 while INSTR("APC"."X") would
return 0.

We might, for example, wantto find out
whether NAMES contains the sub-string

‘Rev.". Using INSTR, we would do this |

like so:

100 IF NOT(INSTR(NAMES."Rev.”)
=0) THEN PRINT NAMES;" is a
vicar.”

To simulate this in standard Microsoft,
we use MIDS. In the above example, we
would do so thus:

100 FLAG=0:FOR
(LEN(NAMES)—-4)

110 IF MID$(NAMES, A 4)="Rev.”
THEN FLAG=1

120 NEXT

130 IF FLAG=1 THEN
NAMES:"is a priest.”

Note that on an Atari, line 1 10 would
read as follows:

110 IF NAMES(A . 4)="Rev.”

A=] TO

PRINT

THEN

FLAG=1

Page 140 Australian Personal Computer

Fb3e 5s(2) p140-141

1of 2,

—”

I

and ona Sinclair machine. it would read:

110 IF NAME$(A TO A+4)="Rev.”
THEN FLAG=1

These differences are due to the non-
standard forms of MIDS$ supported by
these machines. The original example
should work on all other dialects of Basic.
PROCEDURES AND FUNCTIONS:
User-definable functions are supported in
varying degrees of sophistication by a
number of machines. but you are most
likely to come across the extended use of
procedures and functions in BBC pro-
grams. Procedures and functions make
programs infinitely neater and more read-
able. but they don't actually achieve
anything which cannot be duplicated using
ordinary sub-routines.

Some dialects of Basic will allow you to
GOTO or GOSUB a variable which
greatly aids readability — the Basic
Converter Chart will tell you which
machines do if you look under GOTO.

Sharp Basic SP-5025 has a number of
weaknesses which are discussed in the
article *Sharp Logic’ in the September
issue.

REPEAT-UNTIL and WHILE-WEND.
These are two forms of the same control
loop. one being the logical reverse of the
other. WHILE-WEND checksthatagiven
expression is true and then executes all
statements up to the first WEND state-
ment encountered. The computer then

returns to the original condition to check
whether it is still true. If the condition is
false. the statement following the WEND
statement is executed.

For example:
100 REM — Silly example
110 X=10
120 WHILE X>0
130 PRINT “The current value of X
S S
140 X=X-1:WEND - -
150 REM — Xisnow zero and the WHILE
test fails
In a WHILE-WEND loop, the loop is
repeated while the test expression is true.
A REPEAT-UNTIL loop works the other
way around. All statements between
REPEAT and UNTIL are executed until
the test expression is true. Thus the above
example would be written:

100 REM — Same silly example
110 X=10
120 REPEAT
130 PRINT “The current value of X
=X
140 X=X-1:UNTIL X=0
150 REM - X is now zero and the
REPEAT test is satisfied
Converting from one structure to the
other is thus straightforward. But the
majority of present-day Basics offer neith-
er of the above. To create the same effect,

we have to use a statement that causes
purists to gasp in horror : the GOTO.

Thus:

100 REM — Here we go again

110 X=10

120 PRINT “The current value of X

RNV
130 IF X>0 THEN X=X-1:GOTO120
140 REM — Xisnowzeroand thetest fails
While somewhat less elegant, the net
result is the same. We can see that
rewritinga WHILE-WEND or REPEAT-
UNTIL structure is simply a matter of
manually inserting the test (using IF-
THEN) and pointer (GOTO).
STRINGS is a statement which allows you
to repeat a given sequence of characters.
The format is STRING$(number of times
to print string,string). If you wanted to
printa line of asterisksacross an 80-column
screen, for example, you would state:
STRINGS$(80,“*™). If your machine
doesn’tsupport thisstatement, then we fall
back once again on the ever ready
FOR-NEXT loop. Thus: FOR A=1TO
80:PRINT*“*”;:NEXT, the stringis simply
duplicated, and the numeric argument
placed in the FOR-NEXT loop.
TAB. This issupported by most machines,
except that on the BBC micro the TAB
function is performed by SPC while TAB
prints in predetermined screen fields.

A Pc.

'T‘:S ."‘,’;C(A Hat
Howuc..—

L9, Se

piblihg in

APC Nov £3,

—TA 6 Cormpna “"d A

2 ol 2,

“sis Vevsioa eppeevs L ‘-._g mMmaove C.oMpL&"'L

A BEGINNER’S GUIDE TO PROGRAM CONVERSION

PART 3:APPLE Il GRAPHICS

Surya begins the graphics supplement to the APC Basic Converter Chart with a look at the Apple II.

Applesoft supports no less than four
forms of tab statement: SPC, TAB, HTAB
and VTAB. SPC (x) prints x spaces. So,
SPC(10);"Hello” would move the cursor
ten columns forward and then print
‘Hello’. TAB (x) moves the cursor to
column x. If x is less than the current
cursor column, then the statement is
ignored. Thus SPC moves the cursor
relative to its current position, wrapping
around lines as necessary, whereas TAB
moves to the absolute screen column
specified.

HTAB (Horizontal TAB) is similar to
TAB, but can move left as well as right.
HTAB (x) moves the cursor to column
regardless of the cursor's current
position. VTAB {(Vertical TAB) is used to
position the cursor vertically. VTAB (x)
moves the cursor to line x leaving its
column position unchanged.

As an example:

100 REM: Tabulating on an Apple Il

110 HOME:REMclearscreen, position
cursor top-left.

120 PRINT TAB(10); “Line 1, column
10"

130 PRINT “Line 2, column O;

SPC(5); “column 22”; HTAB(16);

“and”;

140 REM Above line would appear on
screen as Line 2, column O and
column 22

150 PRINTVTAB(12); HTAB(19); "*":
REM centre of 40-column screen

160 END

To find the current cursor position, the
POS (PQOSition) statement is used. POS
(x) returns the current cursor column.
The expression x is a dummy value (that
is, the value has no effect) but must be a
valid expression which Applesoft can
evaluate.

INVERSE switches on the inverse
video attribute, and is cancelled by the
NORMAL statement. So:

100 HOME

110 INVERSE

120 PRINT “This will be printed in

inverse”

NORMAL

PRINT “This will

normally”

150 END

FLASH works in a similar fashion to
INVERSE, switching on the flashing
attribute:

100 HOME

130

140 be printed

110 FLASH -
120 PRINT “This text will flash”
130 NORMAL

140 PRINT “And this text won't!”
150 END

Finally, the SPEED statement allows
the user to control the speed at which
text is displayed on the screen. By
default, the Apple prints text to the
screen as fastas it can, but other speeds
can be selected. Slow speeds (<100)
are useful for displaying instructions and
so on, where the display speed is set to
the average reading speed.

The statement takes the form
SPEED=x, where x is an expression

between O (slowest) and 255

(default):

100 HOME: SPEED=0

110 PRINT “This will be printed very
slowly . .. "

120 SPEED=255

130 PRINT “And this will be printed at
the normal speed”

140 END

The easiest way to simulate slow
printing on other machinesis to place the

With many things in the micro-
computing world, there are agreed
standards. The ASCIl code for

communications; the RS232, Cen-
tronics and IEEE for interfacing; the
5.25in disk and so forth. But when it
comes to graphics it seems that
manufacturers and designers don’t
know the meaning of the word
‘standard’. The reason for this is simple.
In the time it would take todebate, argue,
redesign and eventually implement a set
of standards, the graphics capabilities of
the machines being developed would
have increased beyond all recognition,
rendering the standards useless.

Different machines not only use
different screen resolutions, but the
range of graphics-handling statements
supported varies from simple SET,
RESET and POINT to a whole array of
sophisticated features like drawing
circles and filling-in shapes. All this is a
rather roundabout way of saying thatitis
not possible to cover the subject of
graphics in the form of a quick-reference
chart as with the APC Basic Converter
Chart (See November ‘83, APC.)

What | have set out to do in this series
of articles is to give you enough
information about the graphics-handling

of each machine covered by the chart to

enable you to work out what is
happening in a listing.

Incidentally, as a general tip when
converting graphics, | recommend
mapping out a picture of the graphics
screen of the machine from which you
are converting on square-ruled paper,
marking on it rough values. Next, place a
piece of tracing paper over this grid and
follow the listing through, sketching in
lines and text. You can then place this
tracing paper over a map of your own
screen to see roughly what values you
will need to use.

The complexity of micros’ graphics
often make program listings for one
machine all but incomprehensible to the
owners of other computers. There are a
lot of well written listings in APC for a
variety of machines which readers would
no doubt like to get up and running on
their own micros. For this reason it is
worthwhile going into the subject of
graphics in a fair amount of detail.

The Apple Family

The Apple Il has three variations: the
Apple |, the Appie |1+ and the Apple lle.
All three support Applesoft Basic and

therefore use the same graphics
handling statements.
Applesoft supports three screen

modes — text, low-resolution graphics
and high-resolution graphics. These are
called by the statements TEXT, GR and
HGR respectively.

Text

The normal text screen comprises 24
lines by 40 columns. An 80-column
screen is available by installing an
optional circuit board; and APC
programs written for an 80-coiumn
machine will have this clearly stated in
the accompanying notes.

Text mode has ten statements which
may be used to format text output on the
screen:

HOME clears the screen and Positions
thecursorat the top-left corner. On most
machines, this is achieved by the
statement CLS.

Page 42 Australian Personal Computer

iaLA.

text into DATA statements and use a
FOR-NEXT loop to print one character at
a time. A delay loop is used after each
character is printed to achieve the
reduced speed:
100 REM: This solution is designed to
be portable, not elegant!
FOR a=1 TO 3: REM number of
data statements to read
READa$%$: REMreadline oftextto
be printed
FOR b=1 to LEN(a$)
PRINT MID$(a$.b,1);:
print one character of a$
FOR c=1 to 12: NEXT: REM
empty loop to cause delay
REM adjust value of above
loop to vary speed
NEXT b: REM repeat for next
character in data statement
PRINT: REM move cursor onto
next line
NEXT a: REM repeat for next data
statement
DATA This text will be printed
slowly
DATA So will this
DATA And this
END

110
120

130
140

REM
150
160
170
180
190
200
210

220
230

Low resolution graphics (GR)

The low-resolution screen on the Apple
is addressed as 40 columns by 48 rows.
Sixteen colours are available. The bottom
four lines (8 rows) are normally reserved
for text, but the oft-used POKE-16302,0
makes these available for graphics use.
(The CALL-1998 statement which
usually follows the above POKE simply
sets the extra rows to black.

Once in GR mode, there are five
graphics statements available: -
COLOR=x sets the foreground colour,
where x is in the range 0-15 and is
defined: .
black
magenta
dark blue
violet
dark green
grey
medium blue
light blue
brown
orange
a different shade of grey!
pink

N=20LVONOUOA,WN=0O

green

13 yellow
14 aqua
15 white

Although | just said that x must be in
the range 0-15, it is possible to use any
value up to 255. But since 16 is
equivalent to O, 17 to 1 and so on, this:
fact is not spectacularly useful.

PLOTx,y is used to light up the
specified block in the current foreground
colour, where x is the column andy is the
row. In GR mode, the origin (0.0) is top-
left.

HLIN x1,x2 AT y is used to draw a
Horizontal LINe in the current fore-
ground colour from (x1,y) to (x2.y)
where x1 and x2 are different column
numbers and y is the row.

VLINy1,y2 ATx — of course — draws
a Vertical LINe from (x,y1) to (x,y2)
where x is the column number and y1
and y2 are different rows.

SCRN (x,y) returns the code of the
colour at position (xy). On most
machines, thisis achieved using a POINT
(xy) statement.

Next month: Apple Il high resolution
graphics and sound, and the TRS-80/
System 80.

APC Mav 34

s(3)

P 4247,

As promised last month, we continue
the Apple Il guide with high-res graphics
and sound.

High resolution graphics (HGR)
The HGR screen is addressed as 280
columns by 192 rows with six colotirs
available. The Apple reserves enough
memory for two high resolution screers,
these being called by HGR and HGR2
respectively. Four text lines are agzin
reserved by default and can be made
available for graphics use by the state-
ment POKE — 16302,0 and reset to text
by POKE — 16301,0.

Two POKEs whichyou are likelyto find
in Apple programs using the HGR
mode are:

POKE — 16300,0 to switch from HGR2
.back to HGR
16303,0 to switch from
graphics to text retaining text-
windows and cursor position.

In HGR mode, there are two main
graphics statements: HCOLOR and
HPLOT. HCOLOR=x sets the foreground
colour to x, defined as:

O black
1 green
2 violet
3 white
4 black

5 orange
6 blue
7 white

Although there are eight codes, two
are redundant (4 and 7), leaving six
effective colours.

HPLOT is an easy-to-follow statement
operating in a similar way to most
machines DRAW statements:

HPLOT x,y lights point (xy) in the
current colour.

HPLOTx1,y1 TOx2,y2 draws a line from
(x1,y1) to (x2,y2). Cordinates can be
‘chained’, so that the following HPLOT
statement:

HPLOT 0,0 TO 279,0 TO 279,191 TO
0.191 TOO0.0

draws arectangle around the edge of the
screen. Mostbasicsdon’tallow thistype
of chaining, so you'd have to split up
each pair of coordinates and DRAW, SET
or PLOT each line separately.

HPLOT TO x,y draws a line from the
current cursor position to coordinate
(x,y); it carries on from where it last
left off.

There are seven other graphics
statements in Applesoft HGR mode:
DRAW, XDRAW, SCALE, ROT,
SHLOAD, BSAVE and BLOAD. These
statements concern a feature known as
shape tables. Shape tables are too com-

plexto gointoin the space available here

and, in any case, the information
wouldn’t be much use to owners of other
machines since you will find them all but
impossible to duplicate.

Shape tables are a form of sprite, a
kind of sophisticated use-definable
character. Created by POKEing values
into memory, shape tables may be saved
to tape or disk for later loading. The scale
and orientation of the resultant shapes
can be manipulated using the
statements mentioned above. Anyhow,
unless you are very familiar with both
Applesoft and the machine you are tran
slating to, any program making liberal
use of DRAW, XDRAW, SCALE, ROT,
SHLOAD, BSAVE or BLOAD should be
left well alone.

Sound

There are only two ways to produce
sound on Apple: PRINT CHR%(7) and
POKEing memory location — 16336.
PRINT CHR$(7) produces a short beep,
as with most machines. Producing any-
thing interesting from the noises emitted
by POKEing — 16336 is a decidedly
frustrating and not over-fruitful task, so
this POKE may be safely omitted when
converting to other machines,

s@) p 2,

.20':2_

A BEGINNER’S GUIDE TO PROGRAM CONVERSION

TRS-80/System 80

Surya continues his analysis of each machine on the APC Converter Chart
(see November 1983 issue). High and low resolution graphics and sound
capabilities for the System 80 and TRS-80 Model 100 are featured this month
plus the final part of the Apple Il conversion.

The TRS-80 has limited graphics
facilities; not surprising when you look at
how long the machine has been around.
The graphics resolution is 64 x 48, the
origin (0,0) being at the top left-hand
corner of the screen. Thus:

100 Rem: A totally pointless program
110 CLS: Y=0

120 FOR X=0 TO 63 STEP 1.3

130 Y=Y+1

140 SET ((INT(X)).Y)

150 NEXT X

draws a line diagonally across the
screen.

The graphics statements are SET,
RESET and POINT. SET(x,y) lights the
block at coordinate (xy). RESET
switches it off again. POINT(x,y) tests
the specified point, returning — 1 if itis
litand O if it is not.

The TRS-80 also supports a PRINT @
statement. This allows text to be placed
at a specified location on the screen. For
the purposes of the PRINT @ statement,
the top row of the screen is numbered
from zero at the left-hand side to 63 at
the right. The nextline is numbered 64 to
127, and so onto the bottom line, 960 to
1023. To print at the bottom line, for
example, you simply PRINT @ 960,
thus:

100 PRINT @ 960, “This is printed on
the bottom line™;

The semi-colon at the end of the
PRINT statement supresses the line feed
which would otherwise scroll the
screen upwards.

The TRS-80 does not support sound
as standard.

The System 80

The System 80 is an oriental imitation of
the American TRS-80. Unlike most
imitations, however, the System 80 is

every bit as good as the original. The

TRS-80 is slightly fussier about syntax
that the System 80, but the two are all
but identical. Most Basic programs are
interchangeable. In APC’s Programs sec-
tion, the label TRS-80/System 80 is
used to describe programs written on
either machine.

The TRS-80 Model 100

The TRS-80 Model 100 is Tandy's port-

able micro. The graphics resolutlon is
239 x 63, and the graphics commands
are PSET, PRESET and LINE, PSET and
PRESET are exact equivalents of SET and
RESET. Considering that LCD screens
are not noted for wonderful graphics, the
LINE statement is surprisingly powerful.
The format of the statement is LINE
(x1,y1)—(x2,y2), a, BF. The statement
draws a line from the first coordinates to
the second. If a=1, the line is PSET; if O,

it is PRESET. The additions B and F are
optional. If Bisincluded, than a B)oxwill
be drawn with (x1,y1) as one corner and
(x2,y2) as the other. If the F isincluded,
the box will be F)illed — either PSET or
PRESET, depending on the value of a.

The model 100 also supports sound
(of the beep variety). BEEP beeps.
‘SOUND pitch,length’ plays the specified
note and is similar to most sound
statements.

APc

(p- 92

Conr Aﬂ/JLL I

5'(4) L N-72,

hi - rey

an })

with b acnil)

ERSION

A BEGINNER'S GUIDE TO PROGRAM CO

This month, Surya continues his analysis of each machine on the APC

Convertor Chart with a look at graphics and sound capabilities on the Atari

The Atari is available in Australiain three
forms: the 400, 800 and most recently,
the 600XL. The three models are
upward-compatible, and all have the
same graphics capabilities.

The Atari supports nine different
screen modes, numbered O to 8. Of
these, the first three are text modes, the
rest graphics. A summary of the modes
is given in Fig 1.

The statement GRAPHICS x is used to
select the desired mode, Mode O is
the default.

microcomputers.

red-orange 11 green-blue
pink 12 green
purple 13 yellow-green

purple-blue 14
blue 16

orange-green
light orange

NOO,Phw

Colour register

A maximum of five colours may be dis-
played-at any one time, and this only in
modes 1 and 2. Therefore, Atari gives us
a ‘working palette’ of five colours from

Mode Type Resolution

Full screen
0 Text 40x24
1 Text 20x24
2 Text 20x12
3 Graphics 40x24
4 Graphics 80x48
5 Graphics 80x48
6 Graphics 160x96
7 Graphics 160x96

8 Graphics 320x192

Split screen Colours RAM required
Not available 2 993
20x20 5 513
20x10 5 261
40x20 4 273
80x40 2 537
80x40 4 1017
160x80 2 2025
160x90 4 3945
320x160 1 7900

Fig 1. Atari screen modes

In Fig 1, | refer to full screen and split
screen. Normally, in a graphics mode,
the bottom lines of the screen are reser-
ved for text. By adding 16 to the mode,
this text window can be converted to
graphics use. Thus, GRAPHICS 2+16,
or GRAPHICS 18, selects mode 2
without a text window. In a graphics
mode, PRINT prints to the text window,
while PRINT#6, prints to the graphics
area.

The Atari has a ‘palette’ of 16 colours,
these being known as hues. The hues are
numbered from O to 15:

O grey 8 blue
1 gold 9 light-blue
2 orange 10 turquoise

which-to choose; these are known as the
colour registers. The colour register
defauits are shown in Fig 2.

To select one of these colours, the
COLOUR statement is wused. Thus
COLOUR O will select orange as the
current foreground colour. Colour set-
tings apply only to graphics modes.

The default colour registers can be
reset using the SETCOLOUR statement.
SETCOLOUR takes the format: SET-
COLOUR colour register to be reset, hue
colour number and intensity. The inten-
sity is an even number between O and
14: the higher the number the brighter
the colour, so SETCOLOUR 1,4,5 sets
colour register 1 to a moderately bright

Default
Colour hue Physical
register number colour
0 2 Orange
1 12 Green
2 9 Dark blue
3 4 Pink-red
4 . 0 Black

Fig 2. Colour register defaults

(5) and pink (4) from its default of bright
green (1). Very bright colours (12 and
14) appear almost pure white.

All characters on the Atari are printed
in upper case by default. The statement
POKE 756,226 switches to lower case;
POKE 756,224 goes back to upper
case.

Once the business of selecting
graphics modes and colours has been
sorted out, there are then seven graphics
statements supported: DRAWTO, PLOT,
LOCATE, POSITION, PUT, GET, X10.

DRAWTO x,y draws a line in the
current foreground colour from the last
point visited to the specified coordinate.
(0,0) is at the top left of the screen.

PLOT x,y plots a single point in the
current foreground colour at the
specified coordinate.

LOCATE x,y,var is similar to the Micro-
soft Basic POINT statement: it returns
the colour of the specified coordinate. In
the text modes, it returns a number
between O and 255 indicating the ASCII
code of the character plotted there, and
places it into the specified variable.

POSITION x,y positions the graphics
cursor at the specified coordinate
without affecting the display.

PUT #6,z places the CHRS$ of the
specified ASCII code (2) at the current
graphics cursor position in fmodes O
through 2. In the graphics modes (3-8),

™

Australian Personal Computer Page 75

May 34 3():75-26
1 of 2

A BEGINNER’S GUIDE TO PROGRAM CONVERSION

it plots the colour register (z) at the
current graphics cursor position.

GET #86, var returns the ASCIl code
(text modes) or colour register (graphics
modes) of the specified coordinate, plac-
ing it into the specified variable.

Note that PUT# and GET# state-
ments only refer to the screen where the
specified stream is 6; other values refer
to other devices.

X10 18,#6,0,0,”S:” is a specialised
use of the X10 (general-purpose input/
output statement). It is used to paint a
predefined area with a predefined colour.
To use the statement, the bottom right-
hand corner of the area to be filled is
PLOTted. Next, a DRAWTO the top right-
hand corner is executed. Thirdly, the cur-
sor is POSITIONed at the bottom left-
hand corner, and address 765 is POKEd
with the colour register of the desired
colour. Finally, the X10 18,#6,0,0,"S:"§
is executed.

How is the text colour set in modes O
through 2? Why this can’t be something
as straightforward as COLOUR x, | don't
know. The method of achieving this
modest task is very strange and absurdly
complex, involving referral to two

separate tables and not alittle arithmetic.
It involves setting SETCOLOUR to some
unlikely-looking value, but my advice is
just choose a text colour which looks pretty
on the machine you're converting to.

Soundis handled with a statement called
(wait for it} SOUND. SOUND has four

parameters which, for want of anythin
more original, we’ll call a,b,c and d.

Parameter a specifies the voice (chan.
nel)“in the range 0-3; b is the pitch (Q.
255); c the distortion (0-14, 10 giving 5
pure note, any other channel being
filtered through one of the 13 fixeq |
envelopes); d is the volume, from 1
(barely audible) to 15 (audible).

Middle Cis pitch 121, each semi-tong
is either 6 or 7 steps.

—

Inclair

Surya continues his look at graphics and sound on each of the

machines included on the APC Basic Converter Chart (see

November issue). This month, the Sinclair ZX81 and Spectrum.

Sinclair ZX81

The ZX81 produces black graphics on a
white background. The graphics resolu-
tionis 64 x 44, the origin (0,0) being the
pottom left-hand corner of the screen.
Two graphics statements are supported:
PLOT and UNPLOT.

PLOT xy switches on (ie lights up)
coordinate (x,y). UNPLOT x,y switches
off the specified coordinate. Drawing
lines is achieved using FOR-NEXT
loops, thus:

100 FOR X=0 TO 63

110 PLOT X,0

120 PLOT X,43

130 NEXT X

140 FOR Y=0 TO 43

150 PLOTO,Y

160 PLOT 63.Y

170 NEXTY

would draw a box around the edge of
the screen.

The ZX81 also supports a PRINT AT
function (PRINT @, on most machines).
The PRINT AT screen comprises a 32 x
22 grid with the origin — just to confuse
— as the top left-hand corner. To print
‘"HELLO" in the middle of the screen, you
would enter PRINT AT 11,13;"HELLO".

The ZX81 reserves the bottom two
lines of the screen for input prompts,
error messages, and so on; these lines
are not accessible when programming in
Basic, and so are not assigned
coordinates.

Sound is not supported.

Sinclair Spectrum

Graphics:
The Spectrum is available with either
16k or 48k RAM, but there are no other
differences between the two models.
The Spectrum supports eight fore-
ground and eight background colours.
The single graphics resolution is 256 x
176, but there are limitations when
using colour. The graphics statements
are as follows:
PLOT — PLOT x,y lights coordinate (x,y)
in the current foreground colour.
DRAW — DRAW xy [,a] draws a line
from the last coordinate visited (using

PLOT, DRAW or CIRCLE) to a point x
coordinates to the right and y co-
ordinates up. The values of x and y may
be either positive or negative, and may be
expressions and/or variables as well as
literal numbers.

The value ‘a’ is optional, and instructs
the computer to draw a curved, rather
than straight, line. This value specifies
the number of radians the line must turn
through as it draws; if a is positive, the
line will curve to the right, if negative to

“the left. As a rough guide when reading

listings, if a = 2*pi, a complete circle will
be drawn, a=pi then a semi-circle is
drawn, etc.
CIRCLE — The Spectrum has a built-in
function to draw circles. This is con-
siderably faster than using DRAW, but
less accurate, which is why you find the
DRAW method used in some listings. To
draw a circle, you state CIRCLE x.y,r
where (x,y) are the coordinates of the
centre of the circle and r is the radius.
CIRCLE also appears to contain a slight
bug. After drawing the circle, the state-
ment leaves the graphics cursor in — as
the manual puts it — ‘a rather indeter-
minate place’. For this reason, you will
normally find a PLOT statement
immediately following a CIRCLE. This is
simply to put the graphics cursor in a
known position rather than being a part
of the display routine as such.
PAPER & INK — A wonderfully sensible
idea; PAPER being used to set the back-
gound colour and INK the foreground
colour.The format is the same in both
cases, PAPER (or INK) z where z is the
colour as defined below:

0 — black

1 — blue

2 —red

3 — magenta
4 — green

5 — cyan

6 — yellow
7 — white

BRIGHT — Sets the brightness of the
colours. BRIGHT O being normal,
BRIGHT 1 being extra bright.

FLASH — Flashes foreground colour.
1 =on, 0 = off.

INVERSE — Reverses INK and PAPER.
1 =on, 0 = off.

OVER — Allows overprinting. Normally,
if you print (say) a letter X' and then an
addition sign at the same position, the
second character will obliterate the first.
OVER allows the old character to remain
visible, so that the above example would
produce something like an asterisk (*).

= on, O = off. The only way to recreate
this on other machines is to work out
what the combined character would look
like and see if your character set sup-
ports something similar. If your machine
has the facility to support user-definable
characters, then this is, of course,
another way around the problem.
BORDER — The Spectrum has a border
around the screenwhich the user cannot
access for screen displays using Basic,
but its colour can be reset using
BORDER z, where z is as for PAPER and
INK. BORDER has no equivalent on most
machines and can be safely ignored
when converting from a Spectrum
listing.

Note that colour 8 can be used with
PAPER, INK, BRIGHT and FLASH to set
the respective attributes to ‘transparent’.
Colour 9 can be used with PAPER and
INK to select automatically maximum
contrast, thus each is set to white if the
other is a dark colour and black if the
otheris alightcolour. Thiswould have to
be done ‘'manually’ on most machines.

When describing the resolution of the
graphics screen, | mentioned a limitation
when using colour. Plotting a particular
attribute (colour, inverse, flashing, and
so on) affects the whole of the character
position, rather than just the pixel in
question. Thus, youcannothave a steady
blue line right next to a flashing green
one, though you can have two lines
sporting identical attributes running
alongside each other.

The final graphics-related statement
supported on the Spectrum s
SCREENS. This is a very useful feature
which allows you to save the contents of
the screen memory on tape. This can
subsequently be loaded from tape in
order to recreate the display. The format
is SAVE “filename” SCREEN$ to save,
and LOAD “filename” SCREENS$ to load.
This is most commonly used to foad title
screens for display while the main pro-
gram is loaded.

Sound:
Sound on the Spectrum is controlled
using the BEEP statement. the

onomatopeiac word BEEP being a pretty
accurate description of the sound quality.
The format is SOUND duration, pitch.

Duration is in seconds and pitch is in
semitones: O is middle C, negative num-
bers are lower, positive numbers higher.
Each octave, of course, spang 1 2 semi-
tones.

—

Australian Personal Computer Page 67

p 6‘7.

_PROGRAM CONVERSION

This month Surya turns his attention to the BBC in his continuing series on graphics and sound

on each of the machines included in the APC Basic Converter Chart (see November issue).

Find out how to convert BBC listings to work on your micro.

The complexity of the BBC's graphics
often make its listings all but incom-
prehensible to owners of other
machines. But there are a lot of well-
written BBC listings around which the
aforementioned owners would no doubt
like to get up and running on their own
machines. For this reason, | think it
worthwhile to go into the subject in a fair
amount of detail.

The BBC comes in one of two models:
the ‘A’ and ‘B’. The only difference
between the two as far as graphics is
concerned is that the model B offers
eight screen resolutions, or ‘modes’,
while the A offers only four.

The BBC has very powerful graphics-
handling capabilities. This is useful if you
own one, but makes life difficult for any-
one trying to convert BBC graphics
routines. Let’'s start with the business of
modes. The model B can support eight
different screen resolutions, while the
model A supports modes 4, 5, 6 and 7
only. A brief summary of the modes
follows:

0 — 80x32 text, 640x256 graphics,
2 colours

1 — 40x32 text, 320x256 graphics,
4 colours

2 — 20x32 text, 160x256 graphics,
16 colours

3 — 80x25 text, 2 colours, text only

4 — 40x32 text, 320x256 graphics,
2 colours

5 — 20x32 text, 160x256 graphics,
4 colours

6 — 40x25 text, 2 colours, text only

7 — 40x25 text, teletext mode (see

later)
Mode x, where x is in the range O to 7,
clears the screen and places you into the
appropriate mode. This can be done as
either a command or statement.
Once in a given mode, the graphics
statements are as follows:

CLG —clears the graphics
screen

CLS —clears the text screen

MOVE x,y —move thegraphics cursor

to point x,y

—draw a line from the
current cursor position to
point x,y in the current
foreground colour

—set the colour to be used
for all subsequent print-
ing of text, where x is an
integer in range O to 15
to set foreground colour,
128 to 143 to set back-
ground colour. Note that
the colour values are
dependent upon the
current mode: colour 2,
forexample, isyellowina
four-colour mode but
green in mode 2 (the 16-
colour mode). For an
explanation of the colour
codes, see later.

—sets the colour tobe used
for - all subsequent
graphics operations,
where x is the colour and
w is the logical operation
defined as:

use the specified colour

OR the specified colour with any

colour already present

DRAW x,y

COLOUR x

GCOL w,x

0-—
1 —

2 — AND the specified colour with any
colour already present

3 — XOR (eXclusive OR) the specified

) colour with that already present

4 — invert (that is, change to the logi-

cal opposite) the colour already
present

Note that x is as for COLOUR.

PLOT —more powerful version of
draw: see later for
further details

To set the text or graphics colour,
numbered codes are used. These codes,
as has been mentioned, are dependent
upon the current mode. These codes can
be reset (see VDU later — virtually every-
thing you say about BBC graphics needs
to be qualified in some way), but default
values are:

Two-colour modes (0,3,4 and 6):

Black —O foreground, 128

background

White —1 foreground, 129
background

Four-colour modes (1 and 5):

Black —O foreground, 128
background
Red —1 foreground, 129
background
Yellow —2 foreground, 130
background
White —3 foreground, 131
background
Sixteen-colour mode (2):
Black —O foreground, 128
background
Red —1 foreground, 129
* background
Green —2 foreground, 130
background
Yellow —3 foreground, 131
background
Blue —4 foreground, 132
background
Magenta —5 foreground, 133
background
Cyan —6 foreground, 134
background
White —7 foreground, 135
background

Flashing colours:

Black/White —8 foreground, 136
background
Red/cyan —9 foreground, 137
background
Green/magenta —10 foreground, 138
background
Yellow/blue —11 foreground, 139
background
Blue/yellow —12 foreground, 140
background
Magenta/green —13 foreground, 141
background
Cyan/red —14 foreground, 142
background
White/black —15 foreground, 143
background

The last four colours incidentally, are
not a typesetting error but merely one of
the BBC's little idiosyncrasies.

To recap, first of alla mode is selected.
This determines the resolution and the

Australian Personal Computer Page 129

number of colours available. Then the
screen may be cleared (using CLG and
CLS), and the text colour (COLOUR x)
and graphics colour (GCOLx) set. The

graphics statements available are
MOVE, DRAW and PLOT.
PLOT:

Whichever mode has been selected, the
screen is addressed as a virtual screen
1280 x 1024 pixels. The origin (0,0) is
at the bottom left-hand corner of the
screen though this — like most things on
the BBC — can be repositioned if
desired. As desribed earlier, DRAW x,y
draws a line in the current foreground
colour to the specified coordinates.
MOVE x,y moves to the specified coor-
dinates without drawing (OK — for the
purists — it draws a line in the current
background colour (s)). PL.OT is a more
sophisticated form of DRAW and uses
three parameters which we'll call k, x and
y since the manual does.

Parameters x and y are straight-
forward, these being the coordinates
used. The parameter k determines the
manner in which the line is plotted as
follows:

O — move (ie, draw in background
colour (s)) relative to present
position

1 — draw (in foreground colour) rela-
tive to present position

2 — as 1, aoove, but in logical
inverse colour

3 — as 1, above, but in background
colour. This differs from O in that
the background colour will over-
write any foreground colour
present

4 — move to position (x,y)

5 — draw line to position (xy) in
current foreground colour

6 — as 5, but in logical inverse
colour

7 — as 6, but in current background
colour

Note that O-3 plot x points in the x-axis
and y points in the y-axis; that is, the plot
is relative. 4-7 move to the screen co-
ordinate (x,y); that is, the plot is
absolute.

Higher values of k may be used to
achieve other effects. The ones which
are currently implemented are:

8-15 — asO0-7 butwith the last point

in the line omitted

16-23 — as 0-7 but using a dotted
line

24-31 — as 0-7 but using a dotted
line and with the last pointin
the line omitted

64-71 — as 0-7 but plotting only the
last point of the line

80-87 — as 0-7 but use the last two

points visited to plotandfill a
solid triangle

You can see from the above that PLOT
4 isthe same as MOVE and PLOT 5 is the
same as DRAW.

There are also 33 'VDU codes’, a num-
ber of which are related to graphics.
These appear in listings as VDUx, where
the most commonly used values of x
are:

5 — join text and graphics cursors to
enable text and graphics to be
printed at the present graphics
cursor position. This is disabled
using VDU 4
a very common VDU code used
to redefine logical colours. For
example, colour 1 is normally
white in two-colour modes, but
the programmer may wish to
change it to a different colour.
Thus VDU 19 allows access to
colours not normally available in
a given mode. The statement
takes the form VDU 19, logical
colour code, new colour code,
0.0.0 ORVDU 189, logical colour
code, new colour code;0;. Thus
in mode O, VDU 19,1,3;0;
would redefine white to appear
as yellow. VDU 20 resets all
colour codes to their default
values.
define a user-defined character.
It uses the same binary-based
system as most other machines,
the form being VDU 23, ASCII
code of the character to be
defined, followed by the eight
codes separated by commas.
define a graphics window, that
is an area of the screen outside
of which no graphics may
appear. The form taken is VDU
24,lower x coordinate;lower y
coordinate; upper X coor-
dinate;upper y coordinate;. Thus
VDU 24,100;200;300;400;
would define a graphics window
with coordinate (100,200) as
the bottom left-hand corner and
(300,400) as the top right-hand
corner. This is reset by VDU
26.
define a text window. This
works as for VDU 24, only com-
mas are used instead of
semi-colons and no trailing
punctuation mark is required.
The text screen is 39x31
characters by default. VDU 26
resets default.

19 —

23] —

24 —

28 —

And that covers the graphics handling.
Now for sound.

Sound

The BBC has two sound statements,
SOUND and ENVELOPE. The SOUND
statement is relatively straightforward,
ENVELOPE is so specific to the BBC that

- it would be of little use to spend the not

inconsiderable amount of time
necessary to explainit. Even if you could
work out roughly what sort of sound was
being created, you would have no way of
effectively simulating it on another
machine. What ENVELOPE does is to
define the shape of the sound generated
by the SOUND statement, so you may
not be able to recreate the sound
faithfully.

The format is SOUND channel,
volume, pitch, duration where:
* Channelisin the range 0-3, channel O
producing ‘white noise’ and used to
create special effects.
* Volumeisintherange O to-15 withO
silent (useful) and =15 the loudest.
* Pitch ranges from O to 255, covering
some five-and-a-bit octaves.
* Durationisin therange-1to 254. -1
means ‘continue untilstopped’ (either by
pressing escape or by sending another
note to the same channel), positive
values are in twentieths of a second.

Sending two or more notes to the
same channelat the same time produces
a chord. Where channel O is used, the
type of white noise produced depends
upon pitch, the BBC manual summaris-
ing the effects as follows:

0 — high-frequency periodic noise
1 — medium-frequency periodic noise
2 — low-frequency periodic noise
3 — periodic noise, frequency deter-

mined by pitch
channel 1
— high-frequency white noise
medium-frequency white noise
— low-frequency white noise
— white noise, frequency deter-
mined by pitch setting of
channel 1
And that’s the BBC micro! You do need
to remember that without the e quivalent
of the ENVELOPE statement, you will not
be able to achieve the kind of complex
sound effects used in some BBC pro-
grams. Sound effects are generally the
frills rather than the meat of a program,
and while good sound effects can very
much improve a program, they can
usually be simplified without losing the
effectiveness of a program.

setting of

NoO o s
I

Page 130 Australian Personal Computer

Suss $G) 129-130

NOTES AND ERRATA 1984

More functions for the VZ200, March '84: There is an error in the second
column, just above the listing of the short BASIC program. It should be . ..

~ More functions
- for the VZ200

HERE is a simple way to add automatic line
numbering and trace functions to VZ200
BASIC. Automatic !inc numbecring should
be sclf-explanatory. However, the trace
function may nced some explanation. When
attempting to debug a BASIC program, it is
sometimes uscful to sec exactly what
sequence of instructions the computer is
interpreting. This is the function of the
tracc command. It prints out on the video
the sequence of line numbers the computer
(the interpreter) is stepping through when
exccuting a program. This allows you to
make sure the program is doing what you
intended it to do. (Especially useful in the
casc of conditional GOTO's or GOSUB's).

As adding the trace functions (TRON
and TROFF) is the simplest task. I will deal
with that first.

Before running your program. type in

POKE 31003.175 from the immediate mode
(no line numbers That's iz? This is equiva-
lent to typing in “TRON’. Now when vou
run your program. cach time a new linc is
selected to be interpreted (or the same line
number repeated) it will be printed on the
video. To disable this function just type
POKE 31003.0 from the command level.
This simulates ~using the ‘TROFF
command.

A drawback with this method is that you
might only want to debug a small section of
the program and so have to contend with
sorting out that small scction from the rest
of the displayed line numbers. This can be
simply overcome by adding POKE
31003.175 into your program with a linc
number which places it in the program just
before where you want to start the trace.
Then add POKE 31003,0 with a line num-
ber which places it where you want the trace
to stop.

Auto

Now to dcal with the slightly more complex
*AUTO" function. This function. when
cnabled. saves you the trouble of typing
scquential line numbers when entering a
program. This very uscful function will
automatically display the next line number
when you hit '/RETURN at the end of a line
of program.

To do this you need to supply the starting
linc number and the increment between
lines. Next you need to set a flag which tells
the BASIC that the *TAUTO" function is
cnabled. (This must be done last or you will
go into the "AUTO" mode before you have
supplicd the starting line and increment.)

The starting line number must be POKEd
into locations 30946 and 30947, and the line
increment POKEJ into locations 30948 and
30949, These have to be in two-byte form
with the least significant bit (LSB) going

(Can be done directly by POKE 30945,175.)

ETI April 1985 — 117

Smith VZ200 colour computer.

This article details how you can simply add automatic line
numbering and TRON and TROFF trace functions to the Dick

Steve Olney

into the first location of cach pair. and the
most significant bit (MSB) going into the
sccond.

For the line increment this is no problem
as long as vou keep the increment below
255. (Most increments would normally be
less than 100). Just POKE 30948, ‘incre-
ment” and then POKE 309490 where
‘inerement” is less than, or equal to 255. (1
usually use 10 or 20 as the increment.)

Of course. the line number would most

your starting line number into two bytes
wherc: ® ¥ : ;
LINE NO. =-(MSB * 256) + LSB
and where we:
- POKE 30946, LSB and POKE 30947. MSB
Example: For a starting linc number of 2000
MSB = INT(2000/256) = 7
LSB = LINE NO.—(MSB*256) = 208
So we must:
POKE 30946, 208
POKE 30947, 7
For those not content with trouble of cal-

is entered. I have written a short program to
do this as well as to enable the "TAUTO’
function itsclf. (Can be done directly by
MPOKE 30934.175.) Usc line numbers which
will put it well out of the way of any main
program vou are entering.

0 CLS

10 INPUT"STARTING LINE NO. ™S

20 INPUTINCREMENT ™1

30 MS=INT(S/256): LS=S-MS~*256

40 POKE 30946.LS: POKE 30947 MS

S50 MI=INT(1/256): LI=1-MI"256

60 POKE 30948.L1: POKE 30949 M1

70 POKE 30945.175

80 END

For convenience. type this small program
in starting from linc number 0. This will
cnable quick access by just typing 'RUN’
and then 'RETURN'. However to run your
prograri. you will now nced to type. "RUN
xxxx:. where “xxxx' is the first line number
of vour program.

To exit from the "AUTO" mode. type
‘CTRL" and ‘*BREAK" simultancously
exactly the same way you exit or interrupt a
BASIC program. Incidentally. BASIC will
automatically exit from the "TAUTO" mode
when the new line number would have been

greater than 65529, (The maximum line

{214_ ,){}

likely be above 255, so you must convert .

culating this every time the "AUTO" mode -

number allowed in this BASIC.)

A uscful feature of this "AUTO" function
is that. if you spccify linc numbers which
include previously entered lines. then not
only is the line number displayed but also
the statements previously entered.

The cursor is conveniently positioned at
the end of the line ready for any additions to
that line. This can be used as a convenient
editing feature. For example. let us suppose
you have catered your program and now
wish to go through and make corrections.
Enter the first line number of the program
to be corrected ‘and the appropriate line
increment for that program. You can now
single step through your listing and make
corrections as you wish! Unfortunately.
there is no simple way of decrementing the
line number. (other than manually POKE-
ing in location 30946).

Why So Simple?

How was [able to add these two functions
so casily? Well. on close scrutiny of the
VZ200 BASIC in ROM. I discovered that it
was fundamentally similar to Level 1T TRS-
80 BASIC. By finding the equivalent control
arcas in RAM for the VZ200 BASIC, and by
experimentation. I was able to get the func-
tions working.

Apparently. the machine code for the
exceution of the "AUTO’, "'TRON" and
‘TROFF" functions is still present in the
VZ200 BASIC ROM, but the interpreter
has been altered so as not to recognise the
commands as valid in an input text string.

Why the machine code would he present
in the BASIC ROM but not enabled is a bit
strange. Perhaps some functions were
dropped in order to implement all functions
provided on the multi-function Keys.

A word of warning! Like all sjtuations
where vou arc patching software (especially
when written by someone else). beware of
yet-undiscovered gremlins. 1 take no
responsibility for any havoc wreaked by
same!

A more clegant and flexible ypproach
would be to intercept the text inge spreter
and make it recognise the "AUTQO" and
trace commands from the immedigte com-
mand level. and perhaps add o jjne re-
numbering command. But that's 3 nother
story! ®

ETl March 1984 — 63

!

SR

more
routines

By Philip Middlemiss

In the Dick Smith VZ200 there are a
number of new routines which can be
used by the ‘use of simple BASIC
commands. These routines are:

~1: Defint x (defines variables
listed as integers). ’

.2: Defdbl x (defines variables
listed as double precision).

3: Auto: (auto line numbers).

4: Print Mem: (prints the memory
available).

5: On x GOTO hne1 line2, etc.

6: Delete (deletes a block of

BASIC program).

All of these routines must be used with
a line number, and wunder most
circumstances should be typed before

56 — BITS & BYTES — Juiy, 1984

any other program lines are typed in.

If a program is already in the-computer
and-you wartt to add one of the above
routines ‘then put the line right at the
beginning of the program with a GOSUB
or GOTO routine in the line where you

want the routine to be used. (See
example A).
When the routine is put into the

computer you must use a line number
lower than any existing line number
already in the computer.

When you LIST your program you will
see the line number only, with nothing
after it, so -editing this line is not
possible. The reason that the line is blank
is that in the VZ200 ROM there are no
‘BASIC words'for thesé routines.

Hera are the "instructions for each
routine. Don’t type that wh|ch is
enclosed in ().

(DEFINT X).(X canbe A,B,C, etcor A L
etc).

. 10 PRINT A,B

POKE 31469,153

Then type rest 6f program.

(DEFDBL X)
10 PRINT A,B,C
POKE 31469,155-

Then rest of program.

When these variabies are found in your
program they will automatlcaily be used
as integérs. or double precision as
programmed.)

(AUTO) (to generate AUTO
numbers 10-20-30-40, etc).

1 PRINT -
POKE 31469,183
RUN e

(To generate AUTO line numbers
starting at, say, 500 with steps of 20).
1 PRINT 500,20
POKE 31469, 183
RUN

(The first number is the start number,

line

the second is the step between
numbers).

When AUTO is finished wnth remove.
line 1.
(PRINT MEM)

10PRINT X L

POKE 31470,200.

RUN

(Also see example A.)-
(ON X GOTO
100,200,300)

‘10 POKE 31469, 161

‘{(OR GOSUB)

L AN SO B M A A AR G G S i

5 S T N e MUTRRRAT
{For use see example B.)
(DELETE) :
(After a program has been loaded and
is working you sometimes need to
remove a block of program that is no
longer needed or needs to be replaced.)
1 PRINT 150-300
POKE 31469,182

- RUN

(In this example llnes 150 to 300 will
be deleted.) ;

Example A

When the routiné is required in the
middle of a program use as this example.
2 PRINT X:RETURN
POKE 31470,200
1 GOTO 10

10 (rest of program)

When memory avanlable is required in
the program use: Line no GOSUB 20y
Example B .

Inthe ON X GOTO routine, when X =1
the program will branch to the first line
No., and if X =2 then the program will
branch to the second line No., etc. Here
is how it can be used.

70 PRINT X GOTO 100,200,300,400

POKE 31469,161

10INPUT ““ENTER TWO NUMBERS’
20PRINT'ENTER 1 TO ADD"’

‘,a,b,

30PRINT* 2 TO SUBTRACT"
40PRINT"* 3 TO MULTIPLY*’
SOPRINT* 4 7O DIVIDE”
60INPUT X

80 (continue with rest of program)

Other words decide where this line is
to be, give it the correct line number. But
typeitinfirst followed immediately by its
POKE statement. You could also use it as
example A. You could do it this way:
Type IN PROGRAM B, replace line 70 with
GOTO 2 and then add:

2 PRINT X GOTO 100,200,300,400
POKE 31469,161
1 GOTO 10 =

If two or more of these routines are
required type as below:
5 PRINT A,B,C
POKE 31469,153

-4 PRINT X,Y,2

POKE 31469,155

This will make A,B,C variables integers
and X,Y,Z variables double precision.
These lines can be typed in after the
prograrh .is loaded as long ‘'as line

-numbers lower than five have not been

used. -

V-ZED —
THREE NEW FUNCTIONS

This Is a regutar feature to assist
VZ 200 users to come to understand
more about their camputers and to leam
a few tricks which are not necessarly
covered by the manuals. We weicome
contributions from Readers who have
discovered new fegtures of the machine
or Interesting techniques which they
would like to share with their feflow
VZ-200 users.

The BASIC interpreter in the VZ
200 was written by MICROSOFT, the
company which developed the first
BASIC Interpreter for a micocomputer
way back in the mid 70's and which pro-
bably supplies over 80% of all BASIC
Imerpreters in use today. Not surprising-
ly, when a new computer such as the

It to suit the new hardware and-thepar-
ticular features which the manufacturer
would like Included. From the user's
poirt of view there are both advantages
and dissdvamages fo this approach.
The main disadvantage ks that the
resuiting code can become very untidy
with patches on patches right
thvoughout the ROM. The outcome
often being inefficiet use of space and
slower execution. On the positive side
however, there are likety to be routines
still left in from other interpreters which
are not ktended to be avallable in the
VZ but, with a littie fiddling can be us-
ed. To the average computer user, the
thrill of making your computer do
something which the manufacturer
never intended, 8 worth any of the
disadvantages. The purpose of this ar-
ticle is to start you off with three hid-
den functions. Once you start ex-
perimenting in this area you will no
doubt find others. Please write in and
let us know about them so that we may
all share in them.

The MICROSOFT BASIC inter-
preter as Impiemented In the Tandy
TRS-80 Mode! 1 occupied 12 Kbytes
of ROM. Although we do not know for

sure, It Is Hkely that this implementation
started a new family of BASIC inter-
@reters of which the VZ's Is a derivative.

VZ has a number of additional features
over and above those avallable in the
Tandy. In particular, the support for
higher screen resolution, colour and full
screen editing obviously requires extra

version. In particular, the AUTO TRACE
function and.the free memory indicator
have gone whilst there Is no facllity to

to do aM these things remain locked
away in the ROM and can be access-
ed with a bit of judicious POKEing.

AUTO LINE NUMBERING

The Interpreter contains an
AUTO line numbering routine which
when activated, automatically prints the
next line number on the screen to
speed up the entry of BASIC programs.

start entedng lines commencing with
line 100 with an increment of 10 so that
the second line would be 110 the third
120 etc. The AUTO routine operstes
every time you press the RETURN key
from the COMMAND mode. It looks at
address 30945. If that address contains
a zero then AUTO numbering Is off and
the computer behaves normally.
However, If that value Is 1, the AUTO

“routine looks at addresses 30946 and

30947 to find the value of the starting
lne number then at addresses 30848
and 30849 for the increment between
line numbers. The next line number is
then eutomatically dlsplsyed on the
screen. The only part of the AUTO
routines missing s the ability to
recognise the AUTO command Hitself.
However, If you POKE the appropriate
values into the me addresses
above, you will be able to use this
facility.

To set the starting line number,
POKE the decimal equivalent of Hs
Least Significant Byte (LSB) into ad-
dress 30846 and rhe\dednal equivalertt
of its Most Significant Byte (MSB) into
30847. Similarty, to set the line incre-
ment, POKE its LSB into 30848 and its
MSB into 309489. It Is likely that this is
doubte Dutch to relatively new users of

PROGRAM LISTING 1

w30 FEM SET STARTING LIHE NO
61ale
60020
€003H
£03%0
£@2:0
£007TH
€ONEn
L2100
1L

POFE 30345, S
POFE 30947 . INTLSL-255)
PEM ZET THE INCPEMENT

FOLE
PORE 20343, INTCIN- 255,
FEM SWITCH ON THE AUTO
FOFE30345, 1

the VZ so we have Bustrated the technl-
ques with the program below. If you
wish to know more about the subject
of POKEIng etc. you will tind a good ar-
ticle in Volume 4, lssue 4/5.

We s8uggest you enter this
routine, make sure it works satisfactori-
ly then CSAVE It under the narme AUTO
or similar. You can then load it In
whenever you are doing program
development. We have used high line
numbers to keep It out of the way of
your own programs. o start it opersting.
type RUN 60,000. Incidentally, you ter-
minate AUTO line numbering by press-
Ing the BREAK ksy.

TURNING OFF THE BEEPING
KEYBOARD

Now that you have AUTO line
numbering, you will probably want to sit
up all night entering programs. Only
trouble Is, the beeping of the keys Is
likely to keep the rest of the family
awake.

No problem:

PO;(SE 30779, 0O disables the key beep
whilst
POKE 30779, 1 tums It on again.

You may enter this strajght from
the keyboard or Include it as a line in
your program.

Incidentally, this memory ad-
dress appears to carry out some other
functions, depending on the bit that Is
set. We did a little experimenting and
found that bit O tums on and off the
beep as expected |.e. an even value
POKEd into address 30779 tums off

he beep wh&st en odd number tums

non 0.0, 2 4, 6 8etc. tum It off, 1,
3,5,7, 9etc. tum it on. Bits 1 and 2
have no speclal etfect but bit 3 clears

the screen and positions the cursor at
the bottom left hand comer. This bit

could tell bits 5, Band7hadno effect.
FREE SPACE

the most useful POKE
for a programmer would be a way of fin-
ding out how much string space Is
avallable or how much memory you have
left to cram in those last few lines
before being told by the machine that
you are Out of Memory.

1ry~ the following.

POKE 30882,212:

POKE 308863,39:

PRINT USR(X) ‘FREE MEMORY

OR
PRINT USR(X$) ‘FREE STRING
SPACE

FOF. THE AUTD ROMTINE

INPUT"STARRTING LINE HUMEBEFR":SL
SL=2Su X INT. 2L 2S¢ »»

BETWEEN LIHE NMEERS

INPLUT" INCREMENT BETWEEN LINE MOZ™:IN
20342, IN=256 1 INTCIN-2SE))

LINE NUMEBERING rOMJTIME

S

V-ZED

Last Issue we explained how to
obtain three new functions from the
VZ200, including a POKE which turns
off the beeping keyboard. Reader Ken
Hicks became concerned that this lat-
ter recommendation might actually
cause some damage to the innards of
the computer and possibly to the
speaker itself, he writes:

| read with some interest your
piece on the new functions for the
V-ZED.

It was on the strength of your
supporting this machine that | bought
one for my young son. To date | have
had no joy with the darn thing — it has
twice been returned for service, and |
have not yet received it or a
replacement.

| purchased a copy of the Tech-
nical Reference Manual with the unit, so
while waiting for the unit to turn up
again, | have read the manual from cover
to cover, which probably is not a bad
idea, but which | almost certainly would
not have done under normal circum-
stances. This Manual gives full circuit
diagrams and reveals the very much
simplified address decoding. There is
also some very useful information on
the System pointers, memory mapping,
and particularly the details of graphics.

The addresses of a few routines
in ROM are given, which will be familiar
to ML programmers who use the old
Microsoft ROM. For example, 28A7H
and O1C9H are still message output and
clear screen routines.

"Evidently the writer of your arti-
cle has not studied his TR Manual, as
it gives details of the function of an out-
put latch which effectively occupies all
locations from 6800 to 6FFF inclusive.
This is a write-only latch which services
the cassette output, speaker, and video
display controller. This latch is copied
at 783B (30779), and its bit allocation
is:

Bits O & 5 drive the speaker.
They are normally toggled alterna-
tively in a push-pull fashion to
produce a tone. Holding one bit at ‘O’
would therefore hold the speaker di-
aphragm ‘pushed’, while holding the
other bit at ‘0O’ would keep it ‘pulled’,
with-an audible click as it went from
one state to the other.

Bits 1 & 2 generate the cas-
sette output signal. Fiddling with
these could corrupt a tape if the cas-
sette were in the RECORD position!

Bit 3 controls the VDC dis-
play mode. An ‘O’ here sets MODE
(0), while a ‘1’ causes the VDC to
operate in MODE (1). This effect is
via the video controller chip.

Bit 4 controls the background
colour. It it is ‘O’ then the background
will be green, while if it is ‘1’ the
background will be orange if in
MODE (0) and buff if in MODE (1).
Thus, its effect depends on bit 3.

The BEEP routine is at 3450H.
Calling this address will produce a

BEEP, but some disassembly around
this area would be necessary (or
perhaps around the keyboard scanning
area — from 2EF4H) to find out how to
silence the BEER. It is possible that the
brute force method suggested by your
correspondent could damage the
speaker or a chip by passing a current
continuously, which is apparently what
happens when ‘O’ is POKED intg
30779.-1 don’'t want to disparage your
correspondent, but this just could be
one instance where it is possible to
cause physical damage to a computer
via the keyboard!

Thank you Ken. There are two
minor errors in your analysis of the sit-
uation of which one is significant to this
discussion. Firstly, to correct a point of
fact, bit 5 of the output latch is always
held high whilst bit O is toggled from
high to low to produce sound from the
speaker. Of far more significance than
that, however, is the nature of the
“‘Speaker’’ itself. It is a piezo electric
device. i.e. it consists of a crystalline
substance with two metallised plates,
one connected to bit 5 the other to bit
0. When there is a voltage difference
between these two plates, the crystal
actually changes shape, thus displacing
the air surrounding it causing a ‘‘Click”’
to be heard (if the differential voltage
has been applied rapidly enough). The
BEEP routine you mention at 3450H al-
ternatively sets and resets bit O thus ap-
plying a continually varying wvoltage
across the crystal causing it to change
shape rapidly and emit an audible tone.
During this process very little energy is
disippated since the piezo electric
device appears electrically like a capa-
citor being alternatively changed and
discharged. This device will not be
damaged by applying a constant poten-
tial across it which is within its operat-
ing range. Nor will any IC be called on
to carry excessive currents. In short,
the POKE’s recommended will not
cause any harm to the computer.
Nevertheless, thank you for raising this
interesting subject. We would welcome
similar contributions from our other
readers.

Micro-50 4(5) p 2.
1954

1 REM ¥y MEMORY FEEK #3%

< REM FOR WZ 2aa

2 REM BY F.CARSOH

4 REM EXSSSSESESES LS SRS S 4

S LS

GRS MEMURY PEEK " N

FRINT " S N,
FFIHT"IJJ‘-‘L“(&:!J"[I]&’II-JJ&I..I:f..lllﬂ"‘ TO SLOW (W FRIMTIMG

sty 0 0 - Jg SLOW PUOWNH B

14 FFIHT"_" ;
IBEESRINPRESS+w¢ <. 8- 5o FUR . NEW AUDRESSEE 2

12 FRIMT" . - ;

28 THPUT"MEMURY LOCATION DECIMRL=":x1

L SSRINADDR HE< . DEC ~SUADEC CHE RSCHEE

22 FUORE 1T“4":’ HEXTD -

=4

&5

jeis) (1 E=6ED

a1

b5

(] i

i) ARPEEZ=02,295 F2=E2—-IHTCEZ 7 G=IHTCEZ-F2 »: Z=£5

“ue FORNY=1GTi01S

198 IFG=VTHEHRS$=CHRS(Z > G0TO1 20

118 Z=2+1:MEXT

130 H=F 23256 [=H 16+ J=1=INTC I3 K=INTE I-03: 265 b b S LT

}2:2: igfﬂ#:g;l; =CHRSC Z 5 GOTO S If you are interested in finding
S - . out what your VZ200 stores in its

168 Z=2+1 (HEST memory enter this program and have a

L=416: H=L-THTCL o F=INT L=M3: Z=65 ook,
FORY=1AT01 S The program will display on the

y_:_ff_'f"'"T"{'E[‘gﬁ'—":“ﬁ*‘i < nnTOzEa screen the information you need to

«I-;:_-*_”l JTH’E.H"'dﬁEL"E' =5 know to run it and asks for a start ad-
L 75 THEHZ 44 o dress in decimal.

FEHJ%IP:!E' 290 GOTOZER After going to the start location

FRIMTCZ: it will print the DECIMAL address, Z80

» FIE'?Nﬂ:EE‘i_;ES‘:E,:l;;_4” address, CHR at that address and ASCII
. - s Bl RS L SR J mipwcy N Code.
FRIMTG: i
B e =TT The program runs very quickly
gpm?l}jg‘ l.,".'EL E 1” so to slow it down press the SPACE key.
Ny Fise € Pressing the SPACE key slows down

FIE,ENTP the program and also prints the HEX ad-

FRIMT THEJ 2 :T$ CEOTOESE dress of each location on the screen.
FRIMTF; If you want to change the
COTOSOSS memory location while the program is
running press the (:) colon key and you
will be asked for a new start address.

5 L= IH}E‘IS IFL$—" PTHEMES

o

SH47 GOTOSASS

SHSZ FRINT " 100 1] 2009 €12 MA=Ts 18] R oA T

GRS FORD=ATO455 : HEXTD

SHSS FRIMTTAES 12 541+A1; S

SOEH FRIMTTAES 20 72 ; 4(8) 1 944
U7 PRIMTTAB 26 MCHRSL BT 1) L9, is 54
S0 PRIMTTRE, 22 061 i
SEES kS=IHLETS: [FRe=" " THENIS

JB ER % S

-
PORY
=

SO1E PRINT " et €3 €208 o]) 2505145) ¥ e
1100 PR UHT " S8 €10 B L e I AT
SIS k$=IHEETS

23116 I$=IMKEVS: IFI$=""THENZH1 15

7OIFI$="V (LS GOTOZE

5 IF I$="H"CLS:EHD

1= IHEE S IF [$: 2" AN T$< 2 "HY THEMZG1 16

VZ-200 BUG

To the VZ-200 hackers
among us this short series
of program statements
crashes the VZ-200 (Version
2.0).

10 N=1: INPUTS : FOR
P=1TO S : N=N*
P/(P41): 2 N; : NEXT :

RUN
INPUT 23 twice and the
second time round the
machine goes crazy.
W Tritscher

 S. If you pay me for the
aplive,yl?eeg it and send it
to the person who pro- .
vides the ROM-patch
routine. :

APc Apr &S

[

VI hug

| hope you haven't com-

pleted a review of the Dick

Smith VZ-300 because it

has a bug in the firmware

(the same as the VZ-200).

If one RUNs, (then

INPUTs 29), the following

series of statements, the

computer will crash.

10 N=1:INPUTS: FOR
A=1TOS:N=N+
1/(1 +A):?N; :
NEXT : RUN

| first became aware of
this fault at the 4th APC

Show held at Centrepoint in

Sydney earlier this year and

informed Dick Smith.

However, when | repeated

the test on a new VZ-300

the results were the same.

Dick Smith is therefore sell-

ing the VZ-300 with bugs.

This month we would like to
bring your attention to some bugs in the
Microsoft Basic interpreter as included
in the Model I. Users of the CoCo and
VZ200 might like to try and see if these
bugs are also present in their
computers.

Firstly, there is a problem with
BASIC'’s handling of the ‘‘raise to the
power’’ function. Enter the following
program into your computer and ‘RUN’
it:—

10 FOR X=1 TO 15
20 PRINT 21X
30 NEXT

The resultant printout will be as
follows:—
2

4
8

16

32

64

128
256
512
1024
2048
4096
8192.01

16384

32768

Whilst the above problem prob-
ably won’t occur all that often, it is a
good idea to be aware of it. The same
applies to the following bug.

RND(X) can return a value of
X+ 1 when X is a power of 2. In cases
where RND(O) is just under the value of
one, when multiplied by X, the product
is rounded and this is where the pro-
blem occurs. For instance, A=RND(16)
can return a value for A of 17. To get
around this, use the following:—

10 A=RND(16) IF A>16

THEN 10

W Tritscher

Australian Personal Computer Page 31

The next bug can be found if
you try and use the expression PRINT
VAL ("% ") in your program. Whenever
you have a % sing in a string to be con-
verted by VAL you will get a syntax er-
ror. This bug also appears in the Model
Il ROM. To avoid this error in Disk
Basic use the following routine:—

1000 I=INSTR(X$,”% ")

1010 IF | THEN X= VAL

(LEFT$(X$,1- 1)) ELSE

X =VAL(X$)

Non-disk users should use the
following: —

1000 FOR I=1 TO LEN(X$)

1010 IF MID$(X$,1,1)="%"

THEN 1040

1020 NEXT |

1030 |=LEN(X$)+ 1

1040 X= VAL(LEFTS$(X$,1-1))

This final bug also appears in all
versions of the ‘Level II' ROM. Enter the
following program and ‘RUN’ it:—

10 INPUT A#

20 A#=INT(A#)

30 PRINT A#

If you were to enter — 56320 in
answer to the prompt, the computer
would come back with a result of
- 56576. To explain, when taking the
INT function of a double-precision
number which is evenly divisible by 256
and is less than — 32768 one extra bit
is turned on when processing the
number which is subsequently reduc-
ed by 256, 512 or some other power
of 256. To avoid this add the following
filter to your program:—

100 A# =SGN(A¥#)

*INT(ABS(A#))

The first bug was rnentioned
originally in '80-US". The rest of these
bugs were first mentioned in ‘The Alter-
nate Source’.

In the July edition of APC,
J Williams suggested a
method for printing a mov-
ing message across the bot-
tom of the Comodore 64
screen. | modified this for
the VZ-200:

5 CLEAR 1000
10 A$="PUT MESSAGE

MESSAGE
15 PRINT@480,” "

20 PRINT LEFT$(A$,31);
25 PRINT CHR$(27);:REM
MOVES CURSOR UP

30 FOR I=1TO 40:
NEXT:REM: DELAY

VZ-200 tmce',

HERE":REM LET A$ BE

35 A$=MID$(AS$.2) +
LEFT$ (A$.1):GCTO 25
A friend also told me of a

. tracing function for the

VZ-200:

POKE 31003,175 starts
trace function and prints
line numbers

POKE 310030 disables
this function.

The only problem is with
MODE(1), the screen returns
to MODE(O) to print line
numbers and you don’t get
to see what is happening in
high-res graphics.

Jav Batterson

ArPC 5'(3) AU} 3+

p. Q4.

ITruce function

Jay Batterson’s report on the
trace function for the VZ-
200 is interesting — it is

the same for TRS-80 and
System 80 computers by
what readers might find |
interesting is the way it is
written in ROM viz:

1DF7 3E
1DF8 AF
1DF9 32
1DFA 1B
1DFB 41
1DFC C9

TRON calls 1D7 and reads

TROFF calls 1DF8 and reads XOR A

AR Breffit

LDA 175
LD (16667(, A
RET

LD (16667), A
RET

APcC §(n) Nov. 3¢,

p ias

VZ-200
correction

In the August issue of APC,
Jay Batterson submitted a
short program for printing a
moving message across the
screen with a VZ-200. |
tried this program and it
didn’t work. | was a bit dis-
appointed that you had
published it without testing
it first, so | left it alone for a
while.

Recently | had occasion to
use my computer for a
message on the screen, so |

dug out the August issue
and played around with the
program until | found what
was wrong with it.

So here is the same pro-
gram with modifications to
make it function:

5 CLS
10 A$="YOUR MESSAGE"
20 PRINT @ 480,
LEFT$(AS$,31);
30 PRINT CHR$(28):
40 FOR I=1 TO 60:NEXT
50 A$=MID$(AS,2)
+LEFT$(AS$,1): GOTO 20
| know this one works.

J Kelly

P 25

Y7230 Input

If you are using programs with
, DATA lines, why not use the VZ200
capability by a subroutine that will

2z new data to creete revised daia
linas, as follows:

100 DATA 56

110 INPUT A

120 READ B

130C=A+B

140 PRINT C

150 PRINT **100 DATA";C

Now CSAVE and the next time the
program is used (once you have
moved the cursor up to the last
printed line and entered) the new:
data will be in the pyogram,

With a8 FOR/NEXT loop, the
theory can be applied to extensive
programs, For exampie, you can use
it 1o update top scores in games
programs, or to undste a bulgs:
program, g 8

Gordon Woolf.

From Paul Vowles comes this
program to produce, amazing
pictures of 3D pyramids on your
VZ200. Without doubt, this is one

10 REMARKABLE FYRAMIDS

15 REX BY PAUL VOWLES S
20 CLS3INPUT "PYRAMIOD HEIGHT™;H

22 'INPUT "LENGTH OF BAGE";B

25 0=8/2

30 IF B<1 DR B>B3 OR H<O DA M>60 THEN 20
40 CLS;¥ODE(1)1COLOR 6,11REM CYAK

S0 DL={63-B)+(B/2.5)

55 DU=60-HiDM=G3-8

57 DX=80-INT{H/2.5)

60 Y1=DU1X1=0L3Y2=603:%2<63+D:GOSUB 1000
65 OX=60-INT(H/2.5)

70 Y1=60:1X1<OM:GOSUB 1000

B0 Y1=0X:Y2=DX3;GOSUB 1000

80 FOS Z=Y1 TO 60: SET(X1,2)

95 SET [X2,Z)1NEXT 2

100 X2=0L:Y1=60:Y2=DUsGOSUB 1000

-110 Y1=0X:G0SuB 1000

120 X1=63+0:G0GUB 1000

of the best programs we’ve se=n s0

far for the VZ200 Colour
Compurter!

130 COLOR 7,1

140 OM=63+8/210K=(63+8/2)~{B/2.5])

160 X2=DK31X1=ON:GOSUB 1000
160 X1=63-8:G0OSUB 1000

170

Y1=60:G38UB 1000

180 X1=DN31GOSUB 1000
180 FOR 2=1 TO BO00:NEXT 2

200
210
220
1000
1010

1015
1020
1030
10335
1040
1050
1060
1074

1INPUT "AGAIN";AS
IF LEFTH(AS,1)="Y" THEN 20
END

S«131IF X12X2 AND Y15Y2 THEN Sa—1
SET(X1,Y1):BET (X2,Y2)

YuY7sha1:IF Y1aY2 THEN A1=0:GOTC 1030
Al1=(X2-X1)/(Y2-Y1) 1 IF S==A THEN A1=—A1
FOR X=X1 T0O X2 STEP S

IF X<0 THEN X=0

IF Y<C THEN Y=0

SET[X,Y) s Netirq

IF A1<20 THEX Y=Y1+N/A1

NEXT X1RETURN

Septemiber 1984 — COMPUT'ﬁR INPUT 19

VZ200

Cutting

the
margin

By L. Clarke & A.R. Hill

These hints may help you shorten a
line which is marginally too long to type

into the 64 character input buffer (ie,

exceeds two lines on the screen).

The word, *’PRINT’* may be entered as
a question mark (?) saving four character
spaces. The word, "REM’' or ‘:REM"’,
may be replaced by an apostrophe ('),
saving either two or three character
spaces.

The computer will convert the (?) to
the token for “’PRINT’’ when it is stored
in the memory, so that when the line is
listed, it will appear as ““PRINT"’. If the
line then exceeds 64 characters on the
screen, it will ““wrap around’’ onto the
next line, but will still function normally.
Of course, the on screen editor uses the
input buffer, and any attempt to edit a

Function No How to Use

line exceeding 64 characters will resultin
the loss of all text after the 64th
character displayed on the screen!

The following functions must be
POKEd into an existing line in a BASIC
program.

Example 1:

If the first line of a program is used (eg,
line number 1), then the first memory
location past the line number is 31469.
This does not change regardless of the
number of digits in the line number
because all line numbers are stored in
memory as a two byte code.

Example 2

If you want use any of the following
functions in the middle of a program —
just type up to the place where you wish
to insert #he function, place a dummy

character in that position, and press.

{RETURN].

Immediately {with no line number)
type in the following
PF;!NT PEEK(30969) + 256 * PEEK(30970)

This wnﬂ‘gnve ‘you the memory location
of the last character you typed into the
last program line (in this case the dummy
character). Memorise this number {(write
it down!) then finish typing in the BASIC
line, continuing immediately after the
dummy character.

When you have finished typing in the
line, LIST it and check it is correct,

) statement more VARPTR 192 1#(X)

Description
RANDOM134 1# - Makes RND(
. POKE31469,134 random.

DEFINT 153 18A.B
POKE31468,1563

. Defines all variable starting with
‘A’ or *‘B’* as being integers.

POKE31469,192

STRING$ 196 1PRINT#(12,45)
POKE31470,196

because once you have POKEd the
function code into the memory location
in which your dummy chsracter is
Is'tor|ed, you will not be able to edit that
ine!

You may now POKE the function code
into the memorised location which holds
the dummy character. If the memory
address should exceed 32767, it is first
necessary to subtract 65536 toreduce it
to an integer for the command to
work.

It is assumed you have made no
changes (insertions or deletions) to the
program before the dummy character,
because these would have changed its
memory location.

‘e

DEST STe

Used to locate the memory address
.-of a variable.

Will print 12 asterisks “'** -
_{maximum length of stnng 256
.characters).

MEM 200 1PRINT# Tells the amount of unused memory
:) POKE31470, 200 feft.
; DEFSNG 154 1#C,D "Defines all variables starting with > : .
! POKE31469 154 *C'"-or *’'D"’ as being single ‘FRE 218 1PRINT#(A) Tells the number of unused bytes '
- precnsmn (6/7 digit floatmg) j ‘POKE31470,218 left in memory.
"DEFDBL 155 1#5 F. ’ =S 5 fi I bles start h . FRE : ‘218 1PRINT#(AS$) Telis the number of unused bytes
_POKE31469,155 - :Erf":rs 9Frv§;'abefnsgsdf,u{,'}§ wit : -7 POKE31470,218 feft in the reserved string space.
- 3 %% isi 16/17 digit floati 1 5 ’
g s Fu PRigcision (16/1.7°€igR 1ioBking). CINT: _'_23_9 142 " Removes all digits atter the decimal
ON 14161 3H 4*”' “Used with ON GOTO, DN GOSUB . .. POKE31469,233 point.
I T . POKE31 69 161 - wor ON ERROR {see below). “:CSNG 240 142 “Converts mumeric vagiable: ffam
‘ERROR i;“l#‘ : J Used as “ON ERROR GOTO lme P0KE31459 240 ~~~double to smgle precision.
:855%136758 }gé i WCDBL_H _-241 wz Tl Converts numeric vanable from
VN TE : X © ' POKE314689, 241 " ,single to double precision.
; e return t int. " & , . :
%ESUME . 5|9~ ?‘:100 i ‘ ig:: :zg:' rGeéqrrB 1ooeor.ror poin . FX 242 1A=#(N) Removes all digits to the right of
. %100 NEXT < . After error, return 10 the line after - POKE31471,242 the decimal point. Doesn’t round
; 4 “POKE31469 189 <the one producing the error. s : :*down negative numbers.
EDELETE 182 1#1 50-@00 .~ 4 Deletes fines 150 to 300 inclusive. ERL 2 - 1B4TPRINTH = - " ‘Returns the line number from which
?OKE31469 132 “Both lines 150 & 300 must exist. - ' ‘POKE3147O 184 . program branched to error foutine.
AUTO 183 " - ’ :’Automatii:a!l: prints line numbers ~ ~ERR -195 IPRINTH : _Returné 2 value related 1o the type
T T eOKE31479, - gtarting at 10, increment of 10, .~ ~.POKE31470,195 " of error which ls3t occured.
183:RUN _ _ . . : '
- - : - ‘These functions may be performed either with
AUTO 1B3 1#500, 20 " Automatically prints line numbers ~or without a line number.
. POKE31469, ~starting at 500, increment of 20. ‘For TRON (Trace ON) just POKE 31003,175
Y o 583 :RUN + AUTO will pnm any ex»stmg lines _For TROFF (Trace OFF} just POKE 31003,0 :

. found.

X PQKE30945 175 .

i

4 the AUTO funcnon was haited - I =
. awithlBREAK], it will now continue L ofor
from that point.

““The audible “*beep’’ produced when a key i
essed can be controlled. ,
BEEP -ON just
'~Fot ‘BEEP OFF just POKE 30779.0

POKE 80779 32

—

BITS & BYTES — September 1984 — 63

EXTENDING
VZ 200
BASIC

Following on from
a previous article

- S

(“More functions for the VZ200”

— ETI March 1984)
this article outlines a method
of adding commands

to the standard VZ200 BASIC. -

Steve Olney

THE PREVIOUS article showed how to
unlock several ‘hidden’ functions contained

in the VZ200 BASIC ROM by entering the |

commands indirectly via a BASIC program
itself. This approach meant that it was nec-
essary to run the BASIC program each time
the function was needed. This is very incon-
venient and, as was hinted at in the previous
article, a more elegant (and more conven-
ient) approach would be to have the added
functions accessed as if they were part of the
original command set.

This article gives a method by which this
can be done and gives a practical example
by making the AUTO command part of the
legal VZ200 BASIC command set.

The machine code necessary to achieve
this is quite short because, as indicated in
the previous article, the code which does
the bulk of the work is already resident in
the VZ200 BASIC ROM. It is only neces-
sary to get the BASIC interpreter to recog-
nise the auto line-numbering command
(AUTO X. Y) as legal and then jump to the
relevant code in ROM.

The method outlined here only applies to
adding commands to the ‘immediate execu-
tion mode’. (i.e: typing in commands with-
out line numbers). It does not deal with
commands that are to be used within
programs.

How it works

Those who are only interested in the end
result of adding the AUTO command to the
legal commands can skip this section and go
straight to the section dealing with entering
the program. Those who are interested in
how it works — read on!

The reason why it is possible to add
commands to the standard VZ200 BASIC
command set (thereby extending it) is that,
in common with some other BASICs, at
various points in the machine code in ROM,
calls are made to locations in RAM. This
makes it feasible to modify and/or extend
the code at a later date. A common
example is where a disk system is added
later. An extended or enhanced BASIC can
be implemented by downloading extra code
off disk to the relevant called location. If all
the code was executed in ROM then this
could not be done.

In a non-disk system (such as the present
VZ200) these called locations are usually
initialised to ‘OC9H" (H means hex address
of location), which is Z-80 machine code for
Ret. So normally. when these RAM loca-
tions are jumped to via ‘calls’ from the
BASIC ROM, execution returns immedi-
ately to the BASIC ROM via the ‘Ret’.

Now, because the Ret’s are in RAM, it is
possible to change the Ret to a jump to

extra code which will be executed before
control is returned back to the BASIC
ROM.

In the VZ200, all the calls from the
BASIC ROM to RAM are to locations
between 7952H and 79E2H. One of these
exits will be used to add Auto X.,Y to the
legal command set.

The BASIC interpreter

Leaving the ROM exits for the moment,
consider what happens when an ‘immediate
execution’ command is entered. While the
text is being typed in. the character codes
for each key-press are being entered into a
text buffer at around 79E8H. When Return
is hit, the interpreter looks at what has been
entered into the buffer. Scanning from left
to right. it looks for ‘reserved words’ (words
set aside for commands e.g: Print, List
etc.). The BASIC ROM contains a list of
these reserved words beginning at 1650H
and ending at 1820H. This can be revealed
by an ASCII dump of this block of memory
(the first letter of each reserved word has
80H added to ASCII code which will result
in garbage for that letter.)

The interpreter scans the text trying to
find one or more of these reserved words.
when one of these is found the reserved
word text is replaced by a single byte orp

ETI October 1984 — 135

‘token” (80H to OFBH). The token is the
offsct into the list where the reserved word
is located and is used as an index into
another table which contains the address of
the machine code for that command.

1f the text cannot be resolved into
reserved words or text which belongs to the
reserved words, then a Syntax error mes-
sage is generated. The trick is to intercept
control of the interpreter just after the
reserved list has been scanned and add code
to re-scan the text to see if it contains the
new command Auto X.Y.

By good fortune (or good design),
immediately after scanning has been done
there is a call to RAM (to 79B2H). The Ret
(OC9H) at 79B2H is changed to a jump to
extra code which will re-scan the text buffer
for Auto and if found, will replace the text
with the relevant token.

Because only the reserved word list is dis-
abled (by deleting Auto from it), once the
Auto command text has been replaced by
the correct token (0B7H), the following
interpreter code will recognise the token
and accept it as legal.

Entering the program’

The machine code program is entered via a
BASIC program (Listing 1) which POKEs
the code into RAM from Data statements.

The BASIC program locates the machine
code to high memory after resetting the
BASIC top-of-memory pointer to below
where the code will be POKEdJ. By this, the
machine code program is located out of the
way of any BASIC program to be entered
later. This action is independent of memory
size.

The machine code listing is shown for

‘reference only. All that is necessary is to

enter the BASIC Program, save it on tape,
and from then on just run it before you start
entering your BASIC program. If all is well,
control will be returned to the Ready level
and. unless the machine code is overwritten
by POKEs or the VZ200 is reset, the Auto
command is now part of the immediate
command set.

Auto command syntax
The form of the Auto command is ‘AUTO
X.Y' where X is the starting line number
and Y is the increment beteen line numbers.
Entering AUTO X will give a starting
line number of X and a default increment of
10. while entering AUTO, Y will give a
default starting line number of 10 and an
increment of Y. AUTO by itself will give
both the line number and increment a
default of 10.

To exit the Auto mode. hit ‘CTRL

BREAK'. Entering the Auto mode with
line numbers of statements already entered
can be a. useful single step checking and
editing feature (see previous article).

Adding other commands
This method can be used for ‘unlocking’
other commands ‘hidden’ in the VZ200
BASIC ROM. As shown in the previous
article, the commands TRON and TROFF
are also accessible. In the time since that
article was submitted it has been found that
the code for a delete command (DEL X-Y),
with the same syntax as the LIST command,
is also present in the VZ200 BASIC ROM.
The listing for a BASIC program that
‘unlocks’ the ‘hidden’ code for the AUTO,
TRON, TROFF and DEL commands is
available from the author. It is of the same
form as the program described here.

What next?
The above four extra commands have
proved to be very useful and have resulted

in significant time-savings in writing
BASIC code. Other useful commands
would be REN (line re-numbering),

MERGE (merging small sub-programs on
tape into one program — difficult, because
it appears that the VZ200 CLOAD always
loads a BASIC program to the location in

136 — ETI October 1984

memory from which it was CSAVEd). DH
and HD (allows decimal to hexa-decimal
conversion, and vice-versa). These would
be much more difficult to implement as
there is no code present in the VZ200
BASIC ROM, so they will have to be writ-
ten from scratch.

Cautions

Firstly, as this program uses code in the

Version 2.0 BASIC ROM, users with other

versions (if any) will have to check to see if

the program works with their version.
Secondly, you may have already found

that during normal program entry, occa-
sionally the cursor will skip a linc after you
hit Return. This is of no real consequence
— until now. Unfortunately the auto line-
numbering code doesn't like this and
responds by displaying the next line number
as it should. but then positions the cursor at
the beginning of the next line. Any BASIC
statements or text entered on that line will
be lost.

Each time Return is hit for a new line
number. check to see that the cursor is on
the same line as the new line number. If it
isn't, hit Return again. This will skip to the

next line number. Do this until the cursor is
positioned on the same line as the new line
number, then it is OK to enter statements.
Unless you are fussy the missed line num-
bers should not be a problem. Of course,
you can exit the auto mode (CTRL
BREAK) and restart so as not to miss a linc
number.

A printed listing of a larger program to
add the AUTO plus TRON. TROFF, DEL
commands to the legal command set can be
obtained for $5.00 from the author at: 200
Terrace Rd, North Richmond NSW 2754.
Remember YOUR address! (pref. SAE) @

e
g nachin = o SKIP INC HL iAdiust HL to next byte
NEXT LD A, (HL) iGet byte from text bufier
T AR EE RO R R RO OO OO R RO R R OR A ils 1t zero
i % *% JR Z,ENDLIN-% 31+ zero then end of line
H #* BASIC AUTO LINE-NUMBERING UTIITY FOR THE V2288 ¥% cP 28H ils 1t a space 7
3 *% COPYRIGHT (C) 1984 BY STEVE OLNEY *% JR Z2,SKIP-s% iYes 2 Then skip to next byte
z ¥ 268 Terrace Rd. North Richmond 2754 % LDI iNo ? Then transter byte
P % *% JR NEXT-% jtorward and continue
o H Line in text buffer must terminate with three zero bytes
3 i] and register 'C®' must contain the new line length
H MACHINE CODE PROGRAM (POKE'd +¢rom the Basic program) i
A ENDLIN LD (DE), A iTerminate line with three
i Actual origir depends on the size ot the memory in the INC DE jzZero bytes.
i VvI20@ used, LD (DE), A
i INC DE
STAPT ORG BBAOH LD (DE),A
LD A,C iNew text byte count-1, add 6
H Zave rejlsters to be used CPL ito complemented negative no.
i ADD A,B6 ito adiust to line lengthtl
REGSAV PUSH AF LD (LINLEN),A jand store 1t
PUSH BC i
PUSH DE i Restore registers
PUSH HL {
rUsH I RESREG POP Ix
H POP HL
i 7s1s coie scans the text butfer for the 'AUTO' command. POP DE
H POP BC iDo this Just to empty stack
AUTOSC LD B, 83 iNumber of bytes to scan POP AF :
LD IX,AUTTXT jPointer to 'AUTO' text table LD BC, (LINLEN) iRestore BC with new line
SCAN1 Inc HL jAdjust to rnext byte in buffer LD B, BBH ilength on return to ROM
LD A, (IX+B9: iGet first byte of table RET
CF (HL) iCompare with byte 1n buffer i
JR NZ,EXIT-% i3I+ not egual then ex1t i Auto command not found so we return to ROM without
INC IX iMove to next byte 1n table i altering text or 'C' register.
DJINZ SCAN!-% jLoop bacx until 3 bytes done H
H EXIT POP Ix
i Execution 3rops through to tere if al! 3 bytes match. POP HL
i The 'AUTO' text 1s reglaced with 1ts token (PB7hex) and POP DE
i the rest cf the text (operands 1f any) 1s closed up behind POP BC
the tcken. POP AF
H RET
FNDAUY PUSH HL iSave end of 'AUTO' 1n buffer i Text table for the 'AUTQ’ command. Because the *TO' in
DEC HL iMove back to beginning of i "AUTO" is a reserved word, 1t will have already been token-
DEC HL i "AUTO' text 1in butter i ised. The token for *TO' is BBDH.
LD (HL) ,8B7H iReplace first byte with token H
LD BC, 2PBPH ifor 'AUTO’ AUTTXT DEFB TAT JASCII ~A*
POP DE 3End of 'AUTO' text 1n buffer DEFB i JASCII "u*®
EX DE, HL jHL=end of 'AUTO',DE=token DEFB BBDH i Token for °TO"
INC DE jAd)ust DE to next byte LINLEN DEFS 2
LISTING 1 269 POKEST+I,D
2 REM I HHHH O RO R O R R R RN R R 265 CS=CS+D:’ UPDATE CHECKSUM TOTAL
18 ¥# USE THE SHORT FORM ='=® FOR THE REST OF THE °REM"S #% 278 NEXTI
28 * ¥ x 275 IFCS<>9861THENPRINT*- ERROR IN DATA ENTRY -<:END:' CHECKsUM
38 * #F BASIC AUTO LINE-NUMBERING UTILITY FOR THE V2288 #¥ 282 FORI=1TO3:READLB,0S:TS=TM+0S: " BECAUSE PROGRAM IS RELOCATED
48 * Fy COPYRIGHT (C) 1984 BY STEVE OLNEY *E 299 MT=INT(TS/256):LT=TS-MT#256:' ABSOLUTE LOCATIONS NEED TO
s8¢ (e 288 TERRACE RD. NORTH RICHMOND 2754 ET 3 389 POKEST+LB,LT:POKEST+LB+1,MT:"* LOADED
68 L2 *AUTOBAS” TAPE FILE #17-B 9/5/84 VERSION 1.2 * 318 NEXTI
78 * *¥ % 365 ' ALTER °*RET" AT 79B2 HEX TO JUMP TO START OF MACHINE CQODE
88 " R e R Y e e e e] 378 POKE311SS,L1:POKE31156,M1:POKE31154,195
og 380 POKE3P862,249:POKE32863,08:" LOAD CALL TO "READY" ROUTINE
188 RB=188: TM= (PEEK (38897) +PEEK (38898) #256) -RB: "GET TOP OF 398 X=USRI(B}: " AND GO TO IT
118 MS=INT(TM/256):LS=TM-MS¥256: " MEMORY AND MOVE 395 ' DECIMAL EQUIVALENT OF MACHINE CODE PROGRAM INSTRUCTIONS
128 POKE38897,LS:POKE3B898,MS: * DOWN 188 BYTES 488 DATA245,197,213,229,221,229,6,3,221,33,79,8,35,221,126,8
288 CLEARSS: RESET BASIC STACK PTR 418 DATA198,32,53,221,35, 16,245,229,43,43,54,183,1,8,8, 289,235
238 TM=(PEEK (38897) +PEEK (38898) ¥256):° NEW TOP OF MEMORY 428 DATAL9,35,126,183,48,8,254,32,48,247,237, 168, 24, 244, 18,19
235 M1=INT((TMe1)/256):L1=TM+1-M1%¥256:" NEXT LOC'N ABOVE T.0.M. S381 DATALS,LT, 18, 1241, 187, 1198, 6587 8260,221 , 225, 2251209, 1193
248 ST=TM:IFST: 32762 THENST=ST-65536: " START OF M/C PROG. -1 448 DATA241,237,75,82,9,6,8,2081,221,225,225,209,193,241, 281
258 FORI=1TO082:® LOAD 82 BYTES OF MACHINE CODE INTO RESERVED 458 DATA6S, 85, 189
255 PEADD:’ AREA ABOVE BASIC TOP OF MEMORY 468 DATA11,88,58,83,68,83

ETI October 1984 — 137

TRON/TROFF
function for
VZ-200

When debugging a Basic
program, it is frequently use-
ful to see exactly what
‘sequence of instructions the

computer is interpreting.
This is the function of the
TRON (Trace ON) command
found in many versions of
Basic.

This command is not,
however, directly available to
the VZ-200 user and must
be executed by POKEing
directly to the screen.

POKE 31003,173 enables

the TRON command
POKE 31003,0 disables the

command (enables

TROFF)

The TRON function
executes the program as in

' normal execution, but dis-

plays each line number

" within brackets as it is

executed. This Trace is use-
ful in following the program
flow during debugging,
especially in the case of con-
ditional GOTOs or GOSUBs.
Normal display data
generated by PRINT or other
commands will be inter-
spersed with the Trace line
numbers.

The POKE values can be
entered directly from the
command level and then
RUNnNing the programs, or
they can be incorporated
within the body of the pro-
gram (especially useful if
only a section of the pro-
gram requires debugging).

The use of the CTRL and
BREAK keys can be used at
any time to stop the display
for scrutiny. Entering the
CONTinue command will
restart program execution.

| Thompson

APc.

5(n) Noy. $4

p _R8~¢

MON-200 is a machine code monitor
program for both 8 and 24k VZ-200s,
featuring relatively easy data entry,
screen listing of memory, execution of
routines and provision for dumping
memory to a printer. Also included are
utilities for decimal to hex conversion
(and vice versa) as well as a block
memory move facility. All input is in
hexadecimal.

After CSAVEing and RUNning the pro-
gram, you will have the following options
available:

(E) Enter Data: data is entered eight
bytes at a time in the format
‘NNNN dd dd dd dd dd dd dd dd’
where NNNN is the location of the first
byte to be entered, and dd represents a
single byte. Hit RETURN after the last
" byte, and note that the spaces are essen-
tial for successful operation. Data entry is
not accepted if you specify a ROM loca-
tion (obviously), system RAM, program
RAM or the location of the block move
routine. After entering the first eight
bytes, you may choose to repeat the pro-
cedure or, if entering data in sequential
locations, simply hit RETURN when the
input prompt appears; the next logical

memory location is automatically
calculated and printed for you. The entry
format remains the same whichever
method is used. To abort data entry, hit
‘A’, and to return to the option menu use
‘=, whichis the universal return-to-menu
key throughout the program.

(V) View Memory: after selecting the
‘View' option you will be asked for start-
ing and ending locations (which default
to O and 65528/FFF8H respectively if
none is specified). Again, the ‘A" key may
be used to abort.

(R) Run: in the execute mode you will
be asked to confirm your intention by
typing ‘R’. After entering the starting
location of your routine, and assuming
there is provision for a RET to Basic, you
will be returned to the main menu
after execution.

(D) Decimal-Hex and (H) Hex-
Decimal: simple to use, just enter the
number to be converted and hit
RETURN. Press RETURN to use again or
~' to exit.

(M) Move Memory: you will be asked
to enter the source, destination and
length of memory to be moved, and are
returned to the main menu on comple-

MON-200

by Chris Stamboulidis

tion. The code for the routine is POKEd
into memory from 29200/7210H
onwards, which is part of the video RAM
used by the hi-res screen. This doesn’t
rule out the use of MODE (1) as the
routine is POKEd into place when
needed.
(P) Printout: if you require a hard
copy, ensure that your printer is connec-
ted before power-up. The routine was
written for the PP-40 Printer/Plotter,
although any printer should do. Note that
line 4030 sets the printer to 40-column
mode and selects black ink. Simply
replaceing this with the appropriate
instructions for your printer. After pro-
viding the code to be dumped with a
name, hitting RETURN will enter the
View mode where operation is as des-
cribed here.
(X) Exit: you will be asked to confirm
that this is your intention — YES' is the
only way out.

Note that the following should be
typed in with inverse text:
— line 10 everything within the

quote mark
— lines 20-50 : the letters inside the
greater/less than symbols.

APL.

Nov. §4

£ RA05~ 212
iQC s,

|‘I' []

p I T I e S

: MON -200 197,84 =
)= A MACHINE CODE MONITOR -
Jree FOR THE UZ2-~209® -

N -
s

o W

S DATA 237,75,20,114,237,91,18,114,237, 1
8’7,16,114,237,176, 201
8 CLEARZ200 :G0S1JB20000

10 CLS:PRINT" XXX M O N - 289 %kx
" :Px=0

20 PRINT@134,"<X> EXIT":PRINTTAB(6)" <E>

ENTER DATA"

38 PRINTTAB(6)"<U> UIEW MEMORY":PRINTTAB
(6)"<R> RUN'

4@ PRINTTAB(6)"<D> DECIMAL->HEX" :PRINTTA
B(6)" ¢H> HEX->DECIMAL"

5@ PRINTTAB(6)"<M> MOUE MEMORY" :PRINTTAB
(6)"<P> PRINTOUT"

60 K$=INKEY$:K$=INKEY$:IFK$=""THENGD

78 IFK$="X"THEN10000

80 I1FK$="E"GOSUB100O

90 IFK$="U"GOSUB2000

168 IFK$="P"GOSLB400@

118 IFK$="R" THEN300Q

128 1FK$="H"THEN20@

138 1FK$="D"THENSGO

148 IFK$="M"THEN,000

150 GOTO6@

200 CLS:PRINT:INPUT“HEX#" jHS : IFH$="~"THE
N1@ |

285 GOSUBS@20: IFEF 2THENPRINTERS :GOT0200E
LSEPRINT"DEC#=" ;D

218 Q$=INKEY$:Q$=INKEYS:IFQ$=""THEN210
220 IFQ$="-"THEN1O

230 IFQ$=CHR$(13) THEN20Q

248 GOT0210

580 CLS:PRINT:INPUT"DECH";D$:IFD$="-"THE
N1©

583 IFD$<"@"0RD$> "9" THENPRINTERS :GOT0S0@
585 D=UAL(D$) :GOSUB6@RA : IFEF * THENPRINTER
$:G0T0500

508 PRINT“HEX#=";H$

510 Q$=INKEY$:Q$=INKEY$:IFQ$=""THENS1Q
528 1FQ$="-"THENI®

538 1FQ@$=CHRS(13)THENS@G

540 GOTOS!0@

1080 CLS:PRINT"ENTER DATA @ <=>=MENU <A>
=ABORT " :Mx=0

181@ INPUTEDS : IFED$="-"THEN10

1020 IFED$="A"THEN1000

-

Nov. §4 V§’(n>

P 2A05~2
20F s

Australian Personal Computer Page 209 -

o 1030 [FED$=""THEN1100
1040 IFLENCED$)<>28THENPRINTER$:G0OT01010
1050 H$=LEFT$(ED$,4) :G0SUBS0RO :Mx=D :FORK

. 2=6T027STEP3

o 1060 H$=MID$(ED$,Kx,2) :GOSUBSQ0OA :U=Mx+ (K
X/3-2) _ '

¢ 1870 I1FUY32762THENU=U-FF

. 1088 POKEU,D:NEXT:G0OT01010 -

. 1100 Mx=Mx+8:D=Mx :GOSUBBGBO :PRINTCHR$(8)
5CHR$(272) ;" "H$;

. 1110 FORYx=1TO6:PRINTCHR$(8); :NEXT:G0OTO!

. 1@
2000 CLS:PRINT"UIEW MEMORY : <->=MENU <A

. >=ABORT"

o 2018 INPUT"X START";SU$:]FSUs$=""THENSU=0
:G0T02020

® 2012 I1FSU$="A"THENZ2OOQELSE IFSU$="~-"THENI

. %
2015 H$=SU$:G0SUBSQ00 : [FEFxTHENPRINTERS :

¢ GOT02010

. 2018 SU=D

. 2020 INPUT"Xx END ";EU$:IFEU$=""THENEU=T

._M:60T702030

o 2022 IFEU$="A"THEN20QOELSEIFA$="~"THEN1O

o 2025 H$=EU$:GOSUBSOB0 : [FEFXTHENPRINTERS :
GOTO202@

® 2028 EU=D

° 2030 CLS:PRINTFS$:IFPXTHENLPRINTLEFTS$(FS$,

29) :LPRINTGS

2040 FUORI=SUTOEUSTEP8:D=1] :GOSUBELGLYL :PRIN
° TH$;7 73 :

2050 JFPxTHENLPRINTHS ;" :

2860 IFI>32767THENOF=FFELSEOF =0

. 2070 FORJx=QT07? :0=PEEK(I+Jx -0F) :GOSUB6GO
° @

2080 PRINTRIGHTS$(HS,2);)
. 2082 [FPXTHENLPRINTRIGHT$(HS$,23:"
s 2084 NEXT:PRINT“" :[FPXTHENLPRINT"

2085 [FPEEK(29128)<>32THENPRINTEO,F$:PR]
° NT@422," *
o 2090 [$=INKEY$:I1$=INKEY$:IFI$=""THEN2030

2032 IFI$="A"THEN2000

209S [FIs$="-"THENIO

° 2180 NEXT:Px=0

211@ K$=[INKEY$:[FKs$=" THENZ110

Page 210 Australian Personal Computer
295 -2)2

35k 5,

2115 IFK$="A"THEN200Q
2120 IFK$="-"THEN1®@

2130 GOTO2110@

3000 CLS:PRINTYEXECUTE : <=>=MENU <R>=RU
N ”

3010 INPUT"START LOC";SL$:IFSL$=""THEN3Q
40

3020 IFSL$="-"THENI1D ¢

3030 H$=SL$:GOSUBSOO0 : [FEF # THENPRINTERS :
GOTO3040

3040 PRINT:INPUTYENTER <R> RUN";AN$:IFAN
$=""THEN3040

3050 IFAN$="-"THEN1®@

3060 IFANS$ O "R"THEN3040

3065 MS=D/256:LS5=D~(256%MS)

3070 POKE30862,LS :POKE30863,MS:X=USR(D) :
GOTO10

4000 CLS:PRINT"PRINTOUT : <=>=MENU

4010 PRINT"X ENSURE PRINTER REABY" :PRINT
2P x=

4020 PRINT"Xx ENTER ROUTINE NAME :" :INPUTR
N$:RN$=LEFT$(RN$,18)

4030 LPRINTCHR$(18):LPRINT"S1" :LPRINT"CO
"ILPRINTCHR$(12)

4035 INPUT"HIT <RETURN> TO PRINT" ;AN$:[F
AN$="-"THEN10O

4040 LPRINT"MON-20@ : " ;RN$:G0T02000
SO0 EFx=0:D=0:LNz=LEN(H$) : IFLN*>4THENS®
o]%]

SB10 FORIx=1TOLNx:B$=MID$(H$, [x,1)

5020 [F(B$=>"0"ANDB$=<"3")OR(B$=>"A"ANDB
$=<C"F"ITHENSO30ELSESRSO

5030 Jx=ASC(B$)-48:IFJx>3THENJx=Jx-2
5040 D=Dx16+Jx :NEXT:RETURN

5050 EFx=1:RETURN

6000 EFx=0:H$="":]FD<BORD>FF-1THENG6QQ
6010 Z2x=D-/4036:0=D-4036x%2x :GOSUBESQQ :2x=
D256 :0=D-256%x2«

6020 GOSUB6ESBQ:2x=D-16 :D0=D-16%2x:G0SUB6S
00 :2x=D:GOSUB65SBV :RETURN

6500 H$=H$+MID$(N$,2x+], 1) :RETURN

6600 EFx=]:RETURN

7080 CLS:PRINT"BLOCK MOUE : <¢+>=MENU

-

Nov. §4 Vv f(”).

Australian Personal Camputer Page 211

7805 RESTORE :FORIx=23206T023220 :READJ X :P
OKEIx,Jx :NEXT

J 7010 INPUT"X FROM";SL$:IFSL$="-"THEN1OQ
R 7020 H$=SL$:G0SUBS0Q00 : IFEF*THENPRINTERS :
GOTO?@1@ELSESL=D -
2 7030 INPUT"Xx TO ";DL$:IFDL$="-"THEN1®
o 7040 H$=DL$:GOSUB90BO : IFEFxTHENPRINTERS :
GOTO?@30ELSEDL=D T
° 7050 INPUT"X BYTES";NB$:IFNB$="-"THEN1O
o 7055 H$=NB$:GOSUBSO0@ : IFEFxTHENPRINTERS :
. GOT07850
7060 NB=D:Hx=SL/256:Gx=SL-(Hx¥256) :POKE2
J 9200, Gx :POKE29201,Hx

7070 Hx=DL-/256:Gx=DL-(Hx%256) :POKE23202,
Gx :POKE239203,Hx

. 7080 Hx=NB/256 :Gx=NB- (Hx%256) :POKE 29204,
Eo Gx :POKE29205, Hx
i 7090 POKE30862,22 :POKE30863, 114 :X=USR(Q)
b :G0TO10
. 9000 IFLENCHS$)>4THENS100

3818 GOSUBSVVO

9020 IFD>TMORD<23184THENS100

-l 9030 [FD>38719ANDDC(PEEK(38373)+256*%PEEK
(30874))THENS100Q

3840 IFD>2313939ANDD<K238221THENS100

EN

¢ 9050 EF x=@ :RETURN

o 9100 EFx=1:RETURN

. 10008 PRINT@4439, "ARE YOU SURE" ;:INPUTANS$
10010 IFAN$ < "YES"THENPRINT@443,SS$:GOTO

° (#]%]

10020 PRINT@443,SS$:PRINTR443, "0, K, ":FOR
0=170500 :NEXT

o 10630 CLEARSO:CLS:END

20000 N$="0123456783ABCDOEF " :EF 40 :ER$=""7
ERROR" :FF=65536

° 780620 F$="L0OC : +0 +1 +2 +3 +4 +5 +6 +?
. .

22030 G$=' s s oo oo m oo m e e
® :F$=F$+G$
° 2040 SSs$="
. 20050 TM=PEEK(30837)+256%PEEK(30898J):RET
o URN ‘

Page 212 Australian' Personal Computer V s-(, /)

- LPRINTER

By Robert Quinn

A PP40 printer program for the VZ-200, it allows you to use
your VZ-200 as a typewriter, LPRINTING in upper case, lower
case, normal or inverse print, and to LPRINT graphics.

Instructions

Switch on your PP40 printer plotter. RUN the program and a
blinking cursor will appear on a black screen to indicate your
start position. Type using any of the character keys on the
keyboard by themselves or with the SHIFT key held down.
The corresponding characters will print on the screen and
LPRINT to your PP40 printer.

LPRINTER starts up in normal uppercase mode. Press the
CTRL key to shift to lower case LPRINTING; and press the
CTRL key again to return to upper case LPRINTING.

Hold the SHIFT key and press the X key to shift to inverse
printing and LPRINTING: inverse LPRINTING is dis-
tinguished from normal LPRINTING by underlining.

A carriage return will operate automatically to start a new
line when the end of the line is reached, though the end of the
LPRINTER line (40 characters) will not correspond with the
end of the screen line (32 characters).

A carriage return can be accomplished any time by press-
ing the RETURN key.

Backspacing to the start of the LPRINTER line can be
accomplished by holding the SHIFT key and pressing the B
key. Everytime SHIFT and B are pressed the pen holder will
move left one character. The screen cursor will backspace as
well, but will erase characters it passes over.

The screen cursorwill blink a hash sign when the 35th posi-
tion on the cursor LPRINTER line is reached and a hi-lo
warning buzz will sound to indicate that you are nearing the
end of the LPRINTER line.

The VZ-200 supports sixteen graphic characters.
LPRINTER LPRINTS graphic characters but does not uni-
quely define every one of the sixteen. In the categories that
follow the letters designate the letter keys by which (with the
SHIFT key held down) the corresponding screen graphic
characters are accessed. The number following each letter is
the ASCII code for the graphic character. Then follows a line
of the LPRINTER graphic character that defines those
screen graphic characters. You may wish to refine the defini-
tion of screen graphics so as to give each screen graphic
character a unique LPRINTER character.

&128
J143

IIREEERNEERRREIREERE
00000000000000oooooag

r131
T149 HBBBBBBBBBEEEEEHEEEEE
[133
J133

A129
S130
0132
136

R135
El38
Wlal
Ql4z HHEEEEE08HE6860868888
G137

H]34 151%]%]15]%)51%)%1%)%]%]%]%]%]1%]%]%)%] %] %]

A COPY subroutine is RUN from within the program by
holding the SHIFT key and pressing the C key, producing a
printout of the entire contents of the screen — normal,
INVERSE and graphics.

With LPRINTER CLOADed but not RUNning the COPY
subroutine can be used directly by entering the command
GOSUB300 and pressing the RETURN key.

S REM LPRINTER FOR UZ280 BY ROBERT QUIN
N

1@ COLOR, 1 :SOUND@, 2:CLS

20 FORR=1TO2STEP® : IFPEEK (26875)=243THENS
OUND28, 1 :P=NOTP

22 IFPEEK(26875)=243THENLPRINTCHR$(13);:
LPRINT :D=0 :G0SUB320

25 IFPEEK(26877)=251THENK=NOTK : SOUND20, 1

26 IFPEEK(26875)=250ANDD>BTHENGOSUB2008
27 IFC=20ANDD=35THENPRINT"#" ;CHR$(8)::
GOT023

28 IFC=20THENPRINT" _"iCHR$(8);

29 C=C+]:IFC=4@THENC=1:PRINT1" " ;CHR$(8) ;
30 B$=INKEY$:A$=INKEYS :IFA$<> """ THENSOUND
10,1 :60sSuUBS@

40 As$="" INEXT

55

PC GAMES

1 of 2,

50 A=ASC(AS$) :B=A:]FP=-1ANDA>31ANDACE4THE
NB=B+132

68 IFP=-1ANDA>63ANDAL]128THENB=B+128

6S [FK=-=1ANDA> 63ANDACSSTHENA=A+32

70 IFA>127THENGOSUB110@:G0T098

80 LPRINTCHRS$(A);

90 IFP=-1ANDA<127ANDA> 31 THENLPRINTCHRS (8
) ;CHR$(35);

SS IFB=13THENPRINT" "“;CHR$(8);:D=-1

1808 PRINTCHR$(B); :D=D+t] :IFD=35THENSOUND3
1,2;20,1

102 IFD=4]1THEND=1

19S5 RETURN

110 IFA=1330RA=138THENLPRINTCHR$(85) ;CHR
$(8);CHR$(84); :RETURN

120 IFA=1310RA=14BTHENLPRINTCHR#(85) ;CHR
$(8);CHR$(63); :RETURN

138 [FA=137THENGOSUB1S@:LPRINTCHR#$(92) ::
RETURN

148 IFA=134THENGOSUB19@ :LPRINTCHR$(47); :
RETURN

158 IFA=143THENLPRINTCHR$(/3);CHR$(8);CH
R$(85); :RETURN

160 IFA=128THENGOSUBI13SQ :LPRINTCHR$(42) ;C
HR$(8) ;CHR$(35S); :RETURN

165 IFA=1350RA> 1 38THENGOSUB180@ :LPRINTCHR

$(43); :RETURN
178 LPRINTCHR$(122); :RETURN

198 LPRINTCHR$(?3);CHR$(8);CHR&(85) ;CHRs
(8); :RETURN

200 SOUNDI@, 1 :PRINT" ";CHR$(8);CHR$(8);:
LPRINTCHRS(8);
210 D=D-1] :RETURN

308 FORT=286272T023183:A=PEEK(T)

318 IFA<32THENLPRINTCHRS (A+64) ;ELSEIFAYE
4THENLPRINTCHRS$ (A ; .

320 IFA>B63ANDACSETHENLPRINTCHR®(A) ;CHRS(
8);CHR$(95);

330 IFA>SSANDA<CI28THENLPRINTCHR$ (A-64) ;C
HR$(8) ;CHRS$(3SS);

340 1FA>127THENGOSUB378

358 D=D+1:IFD=32THEND=0 :LPRINTCHR$(13);
368 NEXT :D=0:LPRINTCHR$(13);:LPRINT:RETU
RN

378 IFA>143THENA=A-16:G0T0370
380 GOSUBI110:RETURN

An interesting effect available
on the VZ-200 is the ability to
“reverse the video display via E
POKE command.

‘On turning on the vz- 200.'

(versson 2.0), the text is
shown as bDiack on a light

POKE 307441

or white text on black,

respectively.

POKEing 30744,1 reverses
the 4mage giving light green

_text on a dark green back-
ground with COLORGC .and
orange text on a red back-

ground with COLOR, 1.
POKEing 307440 reveity
N

: COLORO — light green text on dark

effect on the block graphics
on the upper case J gnd Z

(i G Nov 84

Enlarged characters
By John ten Velde

This program allows the user to create
a ''notice board’’ containing a message
in enlarged characters. It could be used
for advertising purposes or as a teachlng
aid.

The program consists of three main
parts: the character information section
(lines 33 to 90); the input section which
allows the user to enter a message of up
to 5 lines of 15 characters (lines 100 to
290); and the outout section which
displays the message on the screen.

In the character information section,

64 — BITS & BYTES — December 1984

A i A NI A o g

each character is defmed by a 27

code which represents the pixels:

tur
dig

ned on in a 7 x 9 pixel grid. The
its are made up of nine three

groups, each group representing one

of

the . character in binary form. The

character information can be altered 4o
produce characters chosen by the user .

required.

¢ ’
S
6 ’
7R
18
28
33

42
48

999009990993999390099093999

'@99 ENLARGED CHARACTERS 993

333399033033030339003330309
H

POKE 38744,1:CLEAR1IS@B:DIMA$(8B):CLS
DIMB(15,5)
A$(33)="0050680080080080080080086068"" !
A$(42)="873073042028127323642073073"" ¥
A$(48)="028034065065065065065034028""0
A$(49)="00880824040008088003808808080828"" |
A$(50)="82£034845002084080€016032127"72
A$(51)="02803486500820812802065034628""3
A$(52)="00840120208361270846048040884"" 4
A$(53)="127664064864124002001802124"°3
A$(54)="02£803406650640692098065634A28"’ 6
A%$(55)="1278010A2884808016032A64064"’ 7
A$(56)="028634065034628A34A65634A28"°8

4

A$(57)="0280634865035029061465334028%79 | '

; A$(5E)="000A0BBB28062600BA2EA2808ARBA "

A$(53)="0000000280280801023028912624" " ;
A$(65)="006020034A651276650650650665" A
AF(66)="1240667650661240668650€66124"’8
A$(E£7)="026G34A65664064064065834428""C
A$(63)="124A66065065665A55055065124"" D
A$(69)="1270640A40641240640640€64127"°E
A$(708)="12706436408641240643540c4864""F
A$(71)="02806340650640671065A656G34828"76
A$(72)="055065665A45127865665965065" ' H
A$(73)="02806060N80B8EARAAEANEEARE2S"]
A3(74)="001A0N1001B012A1BN1865034A22 "]
A$(75)="065E660680720801040668066RE65"K
A$(76)="D64064864064364064364564127""L
AE(77)="065699A25A73BE5B65BESHESEEG""H
A$(78)="R65097681073D69967265865965" ' N
RE(79)="0280340650656550A5RF5A34028° 0
A$(8A)="124066065AK6124364864154064"'F
A$(E1)="028034065065665065069634029"°Q

2 A¥(82)="124066086506612487207306K0E5" "R

A$(E3)="0828034665032626A020656340628%’S
A$(84)="127603808833073AH3H03YP8BLE"" T
AF(B5)="0650A65065065065065065634028" 7Y
A%(86)="0865065065A3463406200208048a33" "V
A$(E7)="06506506506506656730693119634"° |
A$(85)="865065034028003020A34A5650L5"" ¥
A%(89)="06506503402000668800200806E"" Y
A$(98)="127001252804998016232054127"’ 2
FOR X=28867 -TO 25223 :POKE X, 96t NEXT
FERTX =28839 TO 28967 STEP32:POKE X.96
NEX

ES;TX 28855 TO 28983 STEP32:POKE X»96

FOR ®=28999 TQ 29015 :POKE X,96: HEXT

FOR ¥=168 TO 296 STEP 32 j

FOR X=a TO 14

A$=INKEY$:A$=INKEYS

IF A$="* THEN 208

PRINTI(Y+X), RS

IF IHKEVS()"THEN225

NEXTX

1F INKEY${D""THEN2408 ELSE NERT Vv

FOR ¥= 8 T0 4

FOR X= 8 70 14 ~~ = =7+ . ¥l

B(X,¥)= PEEK((SBX*Y)*32+8+X> .
NEXT X~ ; :
MEXT: ¥ ¢ g

MODE C1D e
FOR v=8.70 4 .,
FOR X=8 T0:14 % .
B o=B(X,¥) "
TFECS2THENE=B 64
IFB= 32 THEN 660
B$=45$(B) ot

FOR v8=8 T0 8

A= UQL(HIDf(BSy(VB+1)‘3 2 3))

FOR N=6 TO @ STEP =1:

M=2*N .

IFR)=H THENSETCX¥8+6-N, VX 114Y0) 10 =A-N
NEXT N

NEXT v@

NEXT X

NEXTY °

T$=INKEVS$: T$=INKEYS

IF T$="* THEN 686

IF C=2 THEN Ce3 ELSE (=2

COLOR C v -

60T05&8

Basic
understanding

| have come to the conclu-
sion that although people
want more software written
for their particular micro,
nobody is prepared to give
away any secrets, so that
more up-and-coming pro-
grammers can have a better
understanding of the way a
cortain problem is solved by
a computer.

In a previous edition of
APC, in the Communications
section, there was a cry of
despair from a VZ-200 user
for a word processor type
program for the VZ-200. On
reading through the Pro-
grams section of a few APC
issues, it is easy to see why
nobody (novices) can write
programs for the VZ-200. It
appears that those who
know the deep dark secrets
of programming would like
to keep these secrets to
themselves.

All of the programs that |
have seen in APC for the ¢
VZ-200, have had no com-
ments (apart from those
with the authors name etc)
in them. It doesn’t take long
to add a few comments into
a program just to let the
reader know what the pro-
gram is doing. For example
the following code is from a
Basic program:

Wouldn't it be a lot easier
to see what the program is
doing (apart from spending
hours tracing through it) if it
were presented in the
following form:

why this is a good practice
to get in to.

There is no need to go
overboard with the com-
ments, but imagine a begin-
ner in this wondrous field of

198 REM ¥X¥XXXXXEXEXEXEXEXXXXXXXXXXXXXXREXXXXX

199 REM X%%¥

ADDING A RECORD

219 CLS!PRINTe.t.c.

268 REM ¥%Xx

261 REM
399 REM ¥¥¥%

END OF ADDITION

CHANGIMNG A RECORD

499 CLS:INPUTe.t.c.

At least from there, the
reader can see what the par-
ticular section of a program
is doing; then if they want to
go into any more detail, they
can use their Basic reference
manual. It also helps if there
is a list of the variables (in
REM statements), and what
each variable is used for, at

‘the beginning of the pro-

gram. Another tip is to use
variables that represent
something. In the example,
NU% is for NUmeric
storage, NR% is for Number
of Records, L1 is for a Loop
(there are three of these in
the program, L1 ... L3),
and RC$ stands for Record
Contents.

Some readers may think
this all a gross waste of time
and effort, but if their little
micros ever acquire the
capability of running other
high level languages (eg,
Pascal, Cobol), they will see

computing, sitting there with
his/her reference manual,
and trying to figure what the
heck is going on in the first
lot of code or what part of
the program it is. | have
visions of a 12/13 year old
in tears, ripping up the
manual, pulling the plug on
the computer and vowing
never to use it again.

If we want this industry to
grow, lets share the secrets
around so that the up and
coming youngsters have the
opportunity of learning from
things that we had to find
out for ourselves.

S Hobson

219 CLS:PRINT"RECORD NUMBER: "jNF%+1:PRINT

229 FORL1=1TONR%:PRINTRNS(L1,1);iIMNPUTRCE(LL,NF%+1)
238 IF(L1=1)AND‘RCE(L1,NF%+1)="") THEMRETURM

240 MEXT:INF%=NF%+1:IFNFA<{SSTHEM29Y
250 PRINT"DATABASE FULL!!!1"IFORL1=1TO1999:NEXT:RETURN
483 CLS:INPUT"WHAT RECORD" ;NU%
413 IF(NU%O>NF%)OR (NU%<Z) THEN4QGI
428 IFMNU%=gTHENRETURN

4392.t.cC.

*¥%%

*¥%x

XXX EXEREXXRE XXX XXX XXX XXX EEREHXEXX

*X%%

Australian Personal Computer Page 171

VZ-200 into
puberty

Steve Olney has produced a
machine code utility which
“re-enables all 23 hidden

-| - commands resident in the
VZ Basic ROM". Apparently
this means VZ-200 will then
have most of the Level ||
TRS-80 commands and a
couple more. It'll set you
back a moderate $15. Write
to Steve Olney, 200 Terrace
Road, North Richmond,
2754.

Page 20 Australian Personal Computer

£(a)

As the earth spins on its axis, there is
always one hemisphere in sunlight and one
in shadow. The junction between these two
hemispheres - day and night - is a great
circle which is called the “grey line”’. A zone

o R of undefined width along the grey line is
called they “grey zone". The grey zone is of
interest largely because here there is a fairly
abrupt change in the ionosphere. For exam-
ple, the D-layer disappears almost com-
pletely at sunset, bringing with its passing
the rapid build-up of MF DX; the opposite is
the case at sunrise.

There is also the well known property that

o efficient communication is possible between
stations both lying in the grey zone. Thus it is
of interest to amateurs to know where the

By Greg Baier grey zone is at any time and to exploit its

properties where possible.

The easiest method of finding the grey line
is to buy a radio globe of the world such s
the “Grey Line Radio Globe” reviewed in
Amateur Radio Action, Volume 5, Number
11, or to construct one from an ordinary
school kids globe as described in Practical
Wireless, March 1984.

A more difficult method, but a more accu-
rate one, is to calculate the grey line. it is a
relatively straight-forward matter to calcu-
late for any date the bearings of the grey line
as it passes any location. For this is a calcu-
lator or set of mathematical tables is suffi-
cient. To calculate whan the grey line
passes a location — sunrise and sunset
times — a moderately sophisticated calcu-
lator is still sufficient. However, in the long
sequence of calculations involved, a home
computer is not only quicker and easier, it is
likely to be more accurate. Because of this,
the latter part of the article is directed
towards home computers, with a reference
for further reading for those with calculators |
only.

BEARINGS OF THE GREY LiNE

In Figure 1, NAS is the meridian through
J location A on the grey line. Q is the subsolar
point, ie the place on the earth’s surface

11 which liesin a direct line between the centre
—M—EM of the earth (O) and the sun. Any great circle
thOUE]h A through Q intersects the grey lime at right
angles. QBN is that part of one of these great
circles which passes through the north geo-

(V2
=
3

|

graphic pole.
What we want to find is angle A and from
Fig. 1 it the bearings of the grey line, X, and (180 +

X) degrees. These will be the pearings at

'°r'(. ~2¢, AMATEUR RADIO ACTION Vol 7 No 10 — 19

sunrise; at sunset the bearings will be (360
— X) and (180 — X) degrees.

For spherical triangle NAB,
sin A/ sin NB = sin B/ sin NA.

NA and NB, although sides of the triangle,
are expressed as the angles these sides sub-
tend at the centre of the earth.

Noting that B = sin90 = 1, that NAis (90
-latitude A) if we set north latitudes positive
and south latitudes negative, and setting NB =
d, we get
sin A = snd/sin (90 —latA)

= sind/cos (lat A)
Referring again to Figure 1, we can see that
d is the same as QOE, which is called the
sun’s declination.

We know latitude. The only unknown is
declination. VK2KIl in ARA Volume 6,
Number 9, page 33 gives a rough formula
which is probably good enough for most pur-
poses. That formula (modified) isd = —23.4
sin (0.9856 D) where D is the number of
days after 21st September. The value
0.9856 D is a value in degrees, not radians.
The declination, d, clearly ranges in value
from —23.4 to 23.4 degrees.

Note that this is the negative of VK2KII's
formula to ensure that the usual sign con-
ventions apply, ie northern declinations posi-
tive and southern declinations negative.
VK2Kll has it the other way around.

Since cos (lat A) is positive regardless of
the sign of the latitude, A takes on the sign
of declination. That is, south declinations Figure 3

Pasition
of sun

|

‘Horizon
at A

such as shownin Figure 1, produce negative

Lquatorial
Plane

Figure 2

€ =23.4°

values for A and north declinations produce
positive values for A. To get the bearing X,
the rule is to set X equal to (360 -- A)
degrees and subtract 360 if this exceeds
360 degrees. This leads to the two sunrise
bearings X and (X + 180) degress and the two
sunset bearings (360 — X) and (180 — X)
degrees. If any of these exceeds 360 de-
grees, subtract 360 degrees.

For example, on 3rd May, D=224 and
hence d = 15.3 degrees. At latitude -35
degrees, say, A= 187 degrees and X =
341.3 degrees. The sunrise bearings of the
grey line are 341.3 and 161.3 degrees; the
sunset bearings are 18.7 and 198.7 degrees

Sunrise and Sunset Times

It is possible to look at a daily newspaper
for the times of sunrise and surmset. They
don’t vary much from day to day, so today’s
times are probably good enough for tomor-
row. The information above is, in these cir-
cumstances, sufficient for day to day oper-
ation.

However, if you don’t buy a daily news-
paper, have poor library services, or you
want to know, for example, when the urey
line will pass the operators in your net across
the Tasman, you may want to calgulate sun-
rise and sunset times.

Program GREYLINE described gnd listed
below carries out these calculations accurate
to a few minutes. The rest of thisse ction is a
description of the procedure folpwed and
can be omitted on first reading. Peigr Duffet-

20 — AMATEUR RADIO ACTION Vol 7 No 10

Smith in hIS excellent ’ Practlcal Astronomy
with your Calculator”, referenced in full
below, has more detail and the interested
reader is strongly recommended to get hold
of a copy and read the relevant sections.

Sunrise and sunset times depend on
where the sun is in relation to the earth and
on the location of the point of observation.
To find out where the sun is on any date, it is
necessary to know how the position of the
sun is described by astronomers.

There are two co-ordinate systems used:
cquatorial co-ordinates and ecliptic co-or-
linates.

Equatorial co-ordinates are based on the
equatorial plane which is the projection of
the plane cutting the earth at the equator.
Ecliptic co-ordinates are based on the eclip-
tic which is the plane in which the earth and
sun move. Figure 2 shows both these planes
which are at an angle of about 23.4 degrees
to one another.

The planes meet in a line which passes
through the earth. One direction along this
line from earth is used as a reference direct-
ion for hoth co-ordinate systems. it is called
the vernal equinox because the sun lies in
this direction from earth on 21st March in
the northern spring.

In each co-ordinate system the plane and
reference direction are used in a manner
analagous to the way the plane of the equa-

tor and the Ilne from the earth s centre to the

Greenwich meridian at the equator are used
for our usual geographic co-ordinate system.
Ecliptic longitude (lambda) begins at O
degrees at the vernal equinox and increases
in an anti-clockwise direction in the ecliptic
plane to 360 degrees back at the vernal
equinox again. The ecliptic latitude (beta)
begins at O degrees and increases- to 90
degrees above and decreases to — 90
degrees below the ecliptic. The ecliptic lati-
tude of the sun is zero always of course.

In equatorial co-ordinates the longitude,
called right ascension (alpha) is based on the
vernal equinox in a way exactly analagous to
that for ecliptic longitude. The angle above
or below the equatorial plane is the declina-
tion (delta) and is positive above the plane
and negative below the plane.

Astronomers have tabulations of various
data, including the position of the sun at
various times. The position of the sun is
given by its ecliptic longitude. Following Duf-
fett-Smith | use the ecliptic longitude at the
beginning of 1980 and from this calculate
the sun’s ecliptic longitude at any time there-
after as:

M + 360/Pl.e.sinM + WG
where M = (360/365.2422).d + EG-WG
and D = the number of days since the begin-

ning of 1980
EG = 278.83354 degrees. The echpnc longi-

tude at the start of 1980.
= 282.595403. The ecliptic longitude at

Fiy. 4

farth's
Orbit

Vernal Lquinox

ECE R L e by
perigee, the pomt where the sun and
earth are closest.

= 0.016718. The eccentricity of the sun-

earth orbit.

Because the sun is moving relatively
rapidly in relation to the earth, the program
calculates the sun’s position at the two mid-
nights straddling the day of interest. It later
uses these to get weighted average and
hence more accurate sunrise and sunset
times.

From the ecliptic co-ordinates, convert to
e2quatorial co-ordinates thus:

Right ascension = tan-' (sin lambda.cos

EP/cos lambda)

"'Declination = sin-' (sin EP.sin lambda)

where EP is the angle between the ecliptic

and the equatorial plane (23.441884 de-
grees).

Declination gives (i) the bearings of the
grey line - as shown above, (ii) whether the
sun rises and sets, and (iii) for how long the
sun remains above the horizon if it rises and
sets. These last two can be seen by refer-
ence to Figure 3. Consider an observer (A) at
south latitude L degrees. Here Lis treated as
the unsigned latitude, ie the absolute value
of latitude. If the declination of the sun is
more than (90-L) degrees north, the observer
at A will never see it. If it has a declination of
more than (90-L) degrees south, it will
always be above the horizon. If the sun’s
declination lies in the range (90-1) degrees
north to (90-L) degrees south, the sun rises
and sets. .

The length of time it is above the horizon
will depend on the latitude of the observer
and the declination of the sun relative to (90-
L) north and (90-L) south. Algebraically this
time is 2H hours where:

H = (cos -' (-tan Latitude.tan delta))/

15.

The other equatorial co-ordinate, the right
ascension, leads to the precise period within
the day that the sun is above the horizon.
There are several steps. Right ascension
gives local sidereal time {see below) of sun-
rise and sunset thus:

Rising time = 24 + alpha —H

Setting time = apha + H.

To understand sidereal times, refer to
Figure 4. On 21st March, the sun is at the
vernal equinox to an observer on the meri-
dian through V and it is noon. 23 hours 56
minutes . later the vernal equinox is again
over the meridian at V. One sidereal (“of the
stars’’) day has passed. Four minutes later
again, the sun is over the local meridian at V
and one solar day has passed. It is noon
again. Because the sidereal day is 23 hours
56 minutes long, sidereal noon falls four
minutes earlier each day than thg day before.
There are thus approximately 366 sidereal
days in the 365 solar day year and this is
because the earth rotates 366 tiimes in the
course of one year not 365. A little ex-
perimentation with a couple of oranges or

- tennis balls will show this is the case.

The sidereal rising and setting times need
to be converted into UTC thus:

AMATEUR RADIO ACTION Vol 7No 10

— 1241

ceived.
Arrays
B(l) The number of days from the beginning
of 1980 to the beginning of (1979+-1)
C(1,J) Right ascension (J= 1) and declination
(J=2) of the sun at the two midnights
{I = 1.2) straddling the day of interest.
E(l1,.J) Number of days in each month (1== 1 to
12) for ordinary (J = 1) and leap
years (J = 2)
F(1,J) Bearings of rising (J = 1) and setting
(J = 2) sun based on two midnights
(I = 1,2) straddling day of interest.
L(l) Ecliptic longitude of the sun at the two
midnights (1=1,2).)
Q(1,J) Latitude (I = 1) andlongitude (I = 2) of
QTH in degrees (J = 1) and minutes
(U=2).
Later in program latitude in decimal
form in Q(1,1), longitucde in Q(2,1).
S(l,J) Local sidereal times of sunrise (J =1)
and sunset (J = 2) based on the two
midnights (I = 1,2).

Greenwich sidereal, and UTC times.

Test Data

The following focations, dates, times anci
bearings may be useful as test data.
UTC = (t - longitudae/15 - d.A +

B). 0.99727

The expression in the bhrackets must be
made to lie in the range O to 24 hours, by
addition or subtraction of multiples of 24,
before the multiplication takes place. In the
equation, t is local sidereal time, d is the
number of days since the beginningof 1980,
A = 0.0657098, and B is a constant which is
different for each year. The program uses
B = 17.37 which is near enough for 1985
and 1986. At around 2400 UTC, this
formula does not convert accurately.
However, sunrise and sunset times in
Oceania should not be affected.

The Program

The program asks for the location latitude
and longitude and the date in which you are
interested. Latitude and longitucie need to be
signed. North latitudes are positive; south
latitudes are negative. West longitudes are
negative; east longitudes are positive. Only
sign the degrees, not the minutes. lllegal lati-
tudes and longitudes are signalled and the
user asked to re-input. The date is input as
DD,MM,YY, eg 22nd April 1985is22.04,85
or 22,4,85. Dates must be in the rajnge 1,1,-
80 to 31,12,99.

Output form is shown in Figure §, Sunrise
and sunset times are accurate to within a
few minutes.

The program runs in the un.gnlarged
VvzZ200. Only minor translation should be
necessary for other machines. problems

——

22 — AMATEUR RADIO ACTION Voi 7 No 10

Canbherra Adelaide Bearings 194.6v Begin with Section 45, Sunrise and Sunset.
14.6° The analogue methods are in ARA Volume
Latitude —35°17° --34°56’ 5, Number 11 and Practical Wireless March
Longitude 143013’ 138°36° 1984, and some simple sunrise and sunsct
Date 22.4.84 24.3.84 References .calculations are in lan VK2K{!'s article in
“Sunrise (UTC) 2031 2050 The basic reference is “Practical Astro- ARA Volume 6, Number 9. The Shortwave
Bearings 345.4° 358.6° nomy with Your Calculator”, by Peter Duf- Propagation Handbook also addresses the
165.4° 178.6° fett-Smith, 2nd Edition, Cambridge Univer- issue of propagation along the grey line
Sunset (UTC) 0728 0849 sity Press, 1982, available in paperback. (Section 6.8).
19 DIM B(29),C(2,2),E(12,2),F(2,2),L(2), 390 IF MMK1 OR MM>12 THEN 449
Q(2,2),8(2,2),T(2) 409 LY=1
q
29 DIM S%(2),T%(2) 410 Y=YY-INT(YY/4)*4
39 FOR I=1 TO 29 429 IF Y=(THEN LY=2
49 READ B(I) 439 IF DD»=1 AND DD<=E(MM,LY) THEN 455
59 NEXT 449 PRINT "ILLEGAL DATE: TRY AGAIN"
6 "
0] gg’gg 2,2326,731,1@96,1461,1827,2192,2557, 450 GOTO 360
79 DATA 3653,4(018,4383,4749,5114,5479,5845, €85 DEB (W=7 oIHbD
6210,6375,6940 460 IFOR I=1 TO MM-1
89 TOR I=1 TO 12 479 D=D+LE(T,LY)
99 READ E(I,1) 489 NEXT
119 NEXT 509 V=M+36Q/PI*EC*SIN(M/DR)
1290 DLATA 31,28,31,39,31,39,31,31,39,31,3p,31 S LOL=VHWG
149 EG=278.83354 29PN B ISLITDE6)
1590 WG=282.596403 S99l GUHOT 527
169 PI=3.1415927 550 I'F L(1)<369 THEN 579
189 DR=57.29578 DORRRSOTCRD T3
19@ EP=23.441884 57@ [.(2)=L(l)+@.985647
230 FL=0 500 ITF L(2)> =360 THEN L(2)=[(2)-36)
231 PRINT "LATITUDE? (SIGNED) DEGS, MINs" 019 FOR I=1TO 2
249 INPUT Q(1,1),Q(1,2) 620 Y=SIN(L(1)/DR)*COS(EP/DR)
250 PRINT "LONGITUDE? (SIGNED) DEGS, MINS" 639 X=COS(L(1)/DR)
279 FOR I=1 TO 2 65¢ IF Y>P THEN C(1,1)=9¢
280 7=90+(1-1)*90 669 IF Y<Q THEN C(1,1)=279
200 IF ABS(Q(I,1))<=% THEN 330 679 GOTO 779
399 PRINT "ERROR IN LAT/LONG",Q(1,1),"DEG G89 IF Y29 THEN 720
REES",Q(I,2), " "MINUTES" G99 IF X>P THEN C(I,1)=0
319 PRINT "TRY AGAIN" 70 1 XK@ THEN C(1,1)=180
329 GOTO 239 710 GOTO 779
339 IF Q(I,2)<P OR Q(I,2)>=6Q THEN 300 720 C(1,1)=ATN(Y/X)*DR
349 Q(I,1)=Q(I,1)+SGN(Q(I,1))*Q(I,2)/69 730 IF Y>Q THEN 750
359 NEXT 749 C(I,1)=C(I,1)+180
3690 PRINT “DATE? DD, MM, YY" 759 1 X*Y>Q THEN 779
379 INPUT DD,MM,YY 769 C(I,1)=C(I1,1)+18Q
389 IF YY<8Q OR YY>»99 THEN 440 77¢ C(1,1)=C(1,1)/15

AMATEUR RADIO ACTION Vol 7 No 10 — 23

775
776
777
799
809
819
812
822
824
839
849
850
860
862
864
879
880
890
909
910
929
930
935
910
950
969
979
a72
974
980
999

1999
1092
1094
1919
11912
1914
1929
1939
1949
1959
1969
1979
1¢8¢

2Z=SIN(EP/DR)*SIN(L(I)/DR)
GOSUB 1399

C(1,2)=AS*DR
X=SIN(C(I,2)/DR)/COS(Q(1,1)/DR)
IF X>-1 AND X<1 THEN 822

FL=1

GOTO 1262

2Z=X

GOSUB 1370

F(I,1)=AC*DR

F(1,2)=360-F(T,1)
X=-TAN(Q(1,1)/DR)*TAN(C(I,2)/DR)
IF X<-1 OR X»1 TIHEN 81¢

B7=X

GOSUB 1379

1I=AC*DR/15

T(1)=24+C(1,1)-H

T(2)=C(1,1)+l

FOR J=1 TO 2

IF T(J)»24 THEN T(J)=T(J)-24

S(I,J)=T(J)
NEXT J

NEXT |

FOR J=1 TO 2

T(J)=24.97*S(1,J)/(24.97+S(1,J)-S(2,J))
NEXT

DE=(C(1,2)+C(2,2))/2
ZZ=STIN(Q(1.1)/DR)/COS(DE/DR)
GOSUB 1379

PS=AC*DR

X=0.835608 .
727=TAN(X/DR)/TAN(PS/DR)
GOSUB 1399

DA=AS*DR
Z2=SIN(X/DR)/SIN(PS/DR)
GOSUB 139¢

Y=AS*DR
DT=24Q*Y/COS(DE/DR) /3609
FOR J=1 TO 2
T(J)=T(J)+(-1)+J*DT

FOR I=1 TO 2
F(I,J)=F(I,J)+(-1)tJ*DA
NEXT

T(J)=T(J)-Q(2,1)/15

1159
1179
1181
1182
1183
1184
1185
1186
1199
1192
1193
1209
1219
1220
1239
1249
1250
1269
1262
1265

1266
1279

1271
1272
1273

1274
1275
1276

1277
1278
1280

1282
1284
1299
1291
1292
1360
1379
1380
139¢
1499

Ryt tdiasaii o v
DX=D*@.09657098-17.37

T(J)=T(J)-DX

IF T(J)>=9 THEN 1184
T(J)=T(J)+24

GOTO 1181
_IF. T(J)<24 THEN 1199

T(J)=T(J)-24

GOTO 1184

T(J)=T(J)*P.99727

S%(J)=INT(T(J))

% (J)=(T(J)-S%(J))*60+0.5

NEXT J

FOR J=1 TO 2
F(1,3)=(F(1,J)+F(2,J))/2-99
F(2,J)=F(1,J)+180

IF F(1,J)<@ THEN F(1,J)=36@+F(1,J)
IF F(2,J)>»36Q THEN F(2,J)=F(2,J)-350
NEXT

CLS
PRINT@Q'" *******xkk*k**x*k**" "GREG BAKER,
MONGARLOWE, 2622"

PRINT "GREYLINE CALCULATOR RESULTS:'",
1ok ok ok K KK ok ok ok ok ok ok ok ok ok k1

PRINT "LATITUDE",Q(1,1),"LONGITUDE",
Ql2,1)

PRINT "DATE:",DD;".'";MM;".";YY
IF FL=1 THEN 1299

PRINT "SUNRISE",S%(1);":";T%(1);"UTC",
"BEARINGS: ks

PRINT USING "###.#";F(1,1);

PRINT USING "######.#";F(2,1)

PRINT "SUNSET",S%(2);":'";T%(2);"UTC",
"BEARINGS: L's

PRINT USING "###.#":F(1,2);
PRINT USING "######.#";F(2,2)
PRINT, , ,""ANOTHER QTH OR DATE?", "TYPE

'Y' TO CONTINUE"

INPUT Y$

IF Y$<>"Y" THEN 136Q¢ ELSE 230
PRINT "SUN DOES NOT RISE OR SET"
PRINT "HENCE THERE IS NO GREYLINE"
GOTO 1289

END

AC=-ATN(ZZ/SQR(1-22%2Z))+PI/2
RETURN
AS=ATN(ZZ/SQR(1-22%22))
RETURN

24 — AMATEUR RADIO ACTION Vol 7 No 10

\VZ-200 BASIC PROGRAM STORAGE & LINE

RENUMBERING

GRAHAM MARSDEN

The VZ-200 does not have a RENUMBER
command so trying to modify a program with
insufficient vacant line numbers is not a
welcome task. This program enables the line
numbers of a program to be reset using any
start number and increment providing they
meet certain conditons.

In order to understand the operation of the
program it is necessary to understand how a
BASIC program listing and its line numbers
are stored in memory.

Each line of program is formated as below

- The first two bytes of the sequence hold the
address, in two byte form, of the first byte
of the sequence for the next program line.
i.e. the location holding the R above is in
location P+256*Q

- The third and fourth bytes hold the line
number.

i.e. in this case the line number will be
L+256*]

- Then the contents of the program line
follow, terminating with a byte containing
the value zero.

For example suppose the line:-

300 PRINT"1":GOTO400
was stored starting at address 38420. This
would be the contents of locations 38420 -
38433

Note that characters (including line
numbers used within a program line after

GOTO or GOSUB,) are stored as their ASC

codes.

- “Operators” like PRINT, GOTO, etc have
their own single byte codes which represent
the operation. The program looks for the
codes for GOTO and GOSUB (amengst
others- see explanation of program
operation) in order to find the locations of
line numbers within program lines. The
codes for wvarious operations can be
determined by putting in a line.

using the operation in question, (ensure it
has the lowest of all ine numbers) and then
type in -

FORZ = 31469 TO 31469+N:PRINT
PEEK(Z);:NEXTZ i
where N is the number of memory positions
that you wish to see codes for. 31469 is the
positionin memoryo{ thefirst item of the first
BASIC programline. i.e. the one immediately
after the line number bytes. The BASIC
Program listing normally starts at 31465
unless moved - but that is another story.

Having understoodhowa BASIC program
is stored it is possible to make changes to it
without having to edit it on screen.

One thing that can be dane is to change all
the line numbers so they follow a constant
incremant.

Here is a program to do just that:-

How to use this program:-

1) Type in and CSAVE as listed.
2) Before keyingin your next program load
the renumbering program from tape.

3) Key in your program with particular
attention to the following.

a) Line numbers used and called
must be in the range 1-9999
b) All line numbers or subroutines

quoted within the text of a program line
must be preceeded by GOTO or GOSUB
and be right justified in a 4 space field.
This means that 5 digit numbers if used
will be seen only as the first four digits
from the left and therefore will not be
found as an existing number.

i.e. IF ... THEN20ELSE325 must be
entered as

IF..THENGOTO 20ELSEGOTO 325
(the line number 20 is preceeded by two
spaces thenumber 325 byone, tocreatea

5

-~

7)

4 space field for the number - This allows
say atwo digit number to be reassigned as
a three or four digit number)

4 space field for the number - This allows
say atwodigitnumber to be reassigned as
a three or four digit number)

c) Line 10010:-

Dimmension N%() greater than the
number of line numbers in the section of
program to be renumbered - A generous
guess will do unless you are short of
memory.

:- Set the value of variable S to
create a “safe zone” which the
renumbering program will not alter.
Normally this value will be 10000 (the first
line number of the renumbering program
itself) or it may be less if you wish to create
a “gap” in line numbers between two
sections of program - say between a main
operating section and another section
containing subroutines or Data lines.
Remember that nothingin the “safe zone”
is altered toa GOTO or GOSUB calling a
lower section renumbered line would
have to be changed separately.

Always CSAVE BEFORE running this
program. If for any reason the
renumberingis not totally successfulthen
what remains of your program will
probably be useless as part will be
renumbered and part will not - equivalent
to a population explosion of bags.

Key in RUN10000

(If the result is a BAD SUBSCRIPT
ERROR IN 10090 then increase the size of
N%() in line 10010 - reloading will not be
necessary as nothing has been altered
yet.)

Enter 1st line number and increment on
prompt.

When the renumbering is complete the
cursor will return and the computer will
be in READY mode (The time to execute

MEMORY LOCATIONS.

OOOOOOO - - - -

One line of

0)0,

-+ =—Next line—s—

program

[
1

38420 38421 38422 38423 38424 38425 38426 38427

ORCIORONCIOORO

L8434 J

Print

38428 38429 38430 38431 38432 38433 38434 38435

ONCIOJOJOLO{OL®

1]
{
i
: Goto Next Line —e=

12 CQ_MPUTER INPUT - March 1985

99 3,_

;uill)be about 1% seconds per program

ine

8) Make any changes as indicated by
messages printed during execution. (You
can BREAK the execution to copy notes
from the screen if it gets too fulland then
enter CONT to continue).

9) Probably a good idea to CSAVE again

10) Thoroughly test the renumbered section
of the program - any problems - reload
that saved at (4) and reRUN 10000 - it is
not unknown for gremlins to be about for
one renumbering run but absent for the
next.

Program Operation
LINES 10000-10090

The line numbers are stored in array N%,

Variable M is initialised to 31465 (BASIC
Program start) and moved to the 1st byte of
each program line by the calculation based
on the values of P and Q the “start - position
of next line” pointers.. While M holds the
decimal value of the memory positions the
value of variable A is used in the PEEK’S.
This is because PEEK and POKE will only
work for the range -32768 A 32767 values for
memory above 32767 must have 65536
subtracted before PEEK or POKE.
Line 10070 ends execution if P and Q both
are zero - this occurs when the end-of-
program byte sequence is found. (Two zero
bytes then a 4 byte.

LINES 10100-10120

The first line number and increment are
entered and edited so that they are both
positive integers greater than zero. At 10120
a check is made as to whether the new
numbering reach into the “safe zone” of line
numbers.

LINE 10130

Reinitialise M back to program start and
variable c to 1, C is the number of the line ie
1st 2nd 3rd etc.

LINES 10140-10180

Calculate new line numberand POKE new
line number to the appropriate bytes. M is
now at the first byte of the line’s storage
sequence. The execution ends at 10160 if the
“safe-zone” is found.

LINES 10190-10210

Calculate R the memory position of the
start of the next line.

LINES 10220-10290

This section searches through the
program line contents looking at the value in
each byte:

0: - end of line - go to next line

34: - Quote marks in a PRINT or INPUT
statement - ignore

136: - DATA - ignore whole line

147: - REM - ignore whole line

141: - GOTO or 145 GOSUB: - alter line

number called.

LINES 10300-10380

M set to the units column position of the
number field area. The string variable 0% is
loaded with the charactersof theline number
field, and variable 0 is given the value of the

18000 *"U2-200 LINE RENUMBERING G.A MAR
SDEN 1984

10010 DIM Nx(288):M=31465:C=1:5=10000° "F
IRST LINE OF SAFE 2ONE"

10028 A=M:IFA>32767 THEN A=A-65536

10030 P=PEEK(A):A=M+1:1F A>32767 THEN A=
A-65536 -

10040 G=PEEKC(A):A=M+2:IFA>32767 THEN A=A
-65536 o

10050 L=PEEK(A):A=M+3:IF A>32767 THEN A=
A-65536

10060 I=PEEK(A)

10070 IF P=BAND@=BTHEN PRINT "SAFE LINE

PAST END " :END

10080 IFL+256%I>=STHEND=C-1:PRINTD;"LINE
S FOUND" :GOT010100

100990 Nx(C)=L+256%] :M=P+256%Q:C=C+1 :GOTO
10020

10100 INPUT"1ST LINE N@.";L$:F=INTCUAL(L
$)):IF F<1 THENGOTO10100

10110 INPUT"INCREMENT";I$:J=INT(UAL(I$))

GIFJCITHENJ=1

10120 IF F+J%(C-1)>=STHEN PRINT" UALUES T
00 LARGE":G0TO10100

18138 M=31465:C=1 L

180140 A=M+2:IFA>32767 THENA=A-65536

10150 B=M+3:IF B>32767A=A-65536

10160 IF PEEK(A)+256%PEEK(B)>=STHEN PRIN
T"FINISHED" :END

180170 W=F+(C-1)%J .

10188 POKEA,W-256%XINT(W/256) :POKEB, INT(W
7256)

10198 A=M:[FA>32767 THENA=A-65536

19200 B=M+1:I1FB>32762 THENB=B-65536
10218 R=PEEK(A)+256%PEEK(B)

19220 M=M+4:T=1

18238 A=M:IF A>32762 THEN A=A-65536
10240 IF PEEK(A)=1360R PEEK(A)=147 THEN
M=R:C=C+1:6G0T010140

10250 IFPEEK(AJ)=1450R PEEK(AJ=141 THEN G
0T010300

10260 IF PEEK(A)=34THEN T=Tx-1

10270 IF PEEK(A)=0 THEN M=R:C=C+1 :GOTO10
140 '
10280 M=M+] i

10290 IFT<0 THENGOTO1026QELSE GOT010230
19300 M=M+t4

10310 0s$=""

18320 FORG=3TOBSTEP-1

10330 A=M-G:IFA> 32767 THENA=A-65536

10340 0$=0$+CHR$(PEEK(A))

10358 NEXTG

COMPUTER INPUT - March 1985

13

"

line number. Lastly a check to see if the line
number called is within the safe zone.

LINES 10390-10470

The position of the old line no 0 is found in
the arrayN%() H% is the position in the array
that the value of 0 is compared with, in line
10470, and is initialised at the middle of the
occupied area of the array. K% is initialised at
just overY, of the occupied length of the
array. K% is reduced to just over % its value
at each loop and H% is altered by adding or
subtracing K% depending on which direction
the search for the line number must go. The
values of the last two array positions looked
at are held in HL% and HP%. If a second look
is taken at any arrav position then the
conclusion is that the number does not exist
and the error message at 10460 is printed and
the search for another GOTO or GOSUB
resumes at 10230. This search routine takes
only 5 or 6 loops to find a number in an array
of 70 line numbers and is therefore more
efficient than just starting at the bottom and
looking at each array position on the way up,
which would take an average 35 loops to find
a line number Of course it relies on the fact
that the numbers are stored in numerical
order. The tests at 10430 and 10440 are to
see if the search has gone beyond the
occupied range of the array and modify H%
and K% accordingly. This routine is useful to
look through any array of values providing
they are in number order. (ascending or
descending).

LINES 10480-10510

String variable NN$ is set to the characters
of the new line number (including spaces) to

be inserted in the 4 byte field of the program

line. Line 10500 allows the start positions of
subroutines to be recorded as the
renumbering goes on. This line could be
ommited and the start of subroutines
marked in the program listing using REM” or
", The " allows the remarks to be put in
inverse characters to make them stand out
as the program zooms up the screen after
LIST.

LINES 10520-10620

This segment ensures that the value of 0 is
consistant with the number of spaces at the
left of the 4 byte field that the number came
from.

LINES 10630-10670

Character by character POKEing of the

"new line number to its position in the line

format.

10368 0=UAL (0$)

18370 IFO>=STHEN PRINT“LINE" ;W ;" (NEW):="
i0ELSE GOTO 10430

10380 PRINT"(TWELUE SPACES]---INSIDE SAF

E 20NE:M=M+1:G0OT010230

10390 HPx=0:HLx=0

10400 Hx=1+D,/2:Kx=D-/2.

10410 Kx(Kx+1)s2:HPx=HLxX :HLx=Hx

10428 Hx=Hx+SGN(B-NX(Hx)JIXKx

10438 IFNx{Hx)=0THENHx=Hx-Kx :Kx=1

10448 IF Hx<1THENHx=1 :Kx=]

10450 IFHx=HPxTHEN GOTO1Q46@ELSEGOTO1047

0

190460 PRINT"LINE" ;W;"(NEW):- ";0;"NOT FO

UND" :M=M+1:G0OT010230

10470 IFNx(Hx)<>OTHENGOTO10410

10488 NN$="[3 SPACES)"+STR$(F+(HXx-11%J)
10498 A=M-4:[FA>32767 THENA=A-65536
10500 IF PEEK(A)=145THEN PRINT"NEW SUBRE
“sNN$"CALLED@" ;LI

10510 NN$=RIGHT$(NNS$,4)

19520 IF0>=100BTHENGOTO10630

19538 A=M-3:1FA>32762 THENA=A-65536

10540 IF PEEK(A)<>32THENGOTO10610

10550 IF 0>=1B@THENGOTO10630

19560 A=M-2:1FA>32762 THENA=A-65536

18578 IFPEEK(A)<>32THENGOTO10610

19580 IF0>=10THENGOTO10630

18590 A=M-1:IFA>32767 THENA=A-65536

10600 IF PEEK(A)=32THENGOTO10630

10610 PRINT"LINE" ;W;"(NEW):FIELD ERROR";

0

10620 PRINT"[4 SPACES]---CHANGE TO NEW N

0.: ";NN$:GOTO10670

10630 FORG=1T04

10640 A=M-4+G:IFA> 32767 THENA=A-65536
10650 POKEA,ASC(MIDSC(NNS$,G,13)

10660 NEXTG

10670 M=M+1:G0TO10230

3 093.

14 COMPUTER INPUT - March 1985

Lqrrj ":‘;lov
ke v2

FIND

By Chris Stkxamboulidis

Find is a machine language routine
which searches your Basic program

- for lines which contain a specified
string up to 16 characters in length.
The routine is quite short (only 117
bytes) and will work with any size vz
because it resides in an unused sec-
tion of the communications region.
There are two methods of entering

Find into your machine: if you have
an Editor Assembler, simply type in
Listing 1, set the origin to 7A28H/
31272, assemble and dump the object
code to tape under the name
‘FIND.OBJ. When you CLOAD or
CRUN the tape, the routine will auto-
run and immediately return you to
the ‘READY" prompt.

The other method s to type in List-
ing 2, which will POKE the machine
code instructions into place for you
and will do all the initialisation. In
this case, make sure that you CSAVE .
a copy of ‘FIND.BAS' before you try *
to RUN it To save you typingitallin -
again if it crashes for any reason,
such as a wrong number in the data

statements. A checksum is used to
make sure that all these numbers add
up, but this doesn’t prevent numbers
being placed in the wrong order.
When you RUN the loader, it should
only take acouple of seconds to do its
job and then return you to ‘READY’.
The Basic loader will have been

NEWed and you're ready to go.

To use Find, simply enter the
following as a direct command:

PRINT&"string”

or

?&“string”
with the string to search for in be-
tween the quotes. The line numbers

of the lines which contain the search
string will then be printed on the
screen for you. Note that leading
spaces in the search string are
ignored and so the routine cannot
search for spaces, eg PRINT&" ”
would be interpreted as a null ftring
and would not be searched for.

PcG Aprys 62~ &4
I of 3.

VONCTAPWRN-

3 Febedododododobo ddeofofokeotefedo ot fodeobko ook kok

3 FIND UTILITY *
s* FOR THE VZ-200 MICRO
3% *
5k ORG=7A28H/31272 *
s#% SYNTAX: PRINT&"STRING" *
3ok *
s#(C) 1785 C.STAMBOULIDIS:#
3 Aokl ok etolsoksloRoRsORoRR ROk HoRok
BUFR EQU 7ATDH
LEN E&U 7AD&H
NUM EQU 77ADH
NEXT E@U 79BOH
INIT LD A; OC3H

LD (7774H) - A

LD HL, FIND

LD (799SH) s HL

CALL 1EB4DH
EXIT JrP 1A17H
FIND INC HL

CALL 3S2CH

LD A, (LEN)

DEC A

LD (LEN) - A

OR A

JR Z-EXIT

LD IX5.(73A4H)
TEST LD A> (IX+0)

OR A

JR NZ,CONT

LD A:. (IX+1)

OR A

JR Z-EXIT
CONT LD L, (IX+0)

LD H, (IX+1) -

LD (NEXT) > HL

LD L, (IX+2)

LD H, (IX+3)

LD (NUPMD) > HL

PUSH IX

FOF HL

INC HL

INC HL

INC HL

INC HL

CALL ZB7EH

s BUFFER FOR SEARCH STRING

3 CONTAINS LENGTH OF SEARCH STRING
sCONTAINS CURRENT LINE NO.
sPT TO START OF NEXT LINE IN PST

sSET UP " &7

sDhO A “NEW’

sAND JUMP TO

sHL FUOINTS

:MOVE STRING TO OUR BUFFER
s:GET LENGTH OF STRING

s SUBTRACT 1

s AND REFLAL

VECTOR TO FOINT
3 TO OUR ROUTINE

*READY?
TO SEARCH

E IT

s IF NULL STRING

sTHEN EXIT

s IX=START OF PST/PTR TO NEXT LINE

:GET LSB OF FTR

s CHECKE FOR
s IF NaT»

ZERO

sGET MSB OF FTR

s CHECK

IF ZERO TOO

sMUST BE END OF P37,

STRING

THEN CONTINUE

SO

:SAVE FTR TO NEXT LINE

1 SAVE CURRENT LINE NO.

sGET FOSITI
s INTCZ HL

UN FTR

EXIT

:BUMF TO 13T BYTE OF STATEMENT

:DE-TOKEMISE CURRENT

L INE

PERSONAL COMPUTER GAMFE'

A/n- s

26k 3

BYTEZ FREE :

47 LD DE, 75ESH s DE= LOCATION OF EXFANDED LINE
G FRE LD A: (LEM) sSET LENGTH OF SERARCH STRING

o LD B:A s INTO B

52 LD L-EBUFR-1 s:HL= BYTE BEFJRE STRING BUFFER
3 3SCAN INC HL sPT TO NEXT BYTE IN STRING

oS4 LD A, (HL) sCHECE IF END OF STRING

55 OR A

S6 JK Z,EXIT s IF 30, THEN WE®RE DONE

57 LD A, (OE) :DE= BYTE FROM STATEMENT LINE
S OR A :CHECK. FOR END OF LINE

57 JR Z>MGORE :IF S0, THEN FROCESS NEXT LINE
&0 INC DE :DE= NEXT BYTE IN STATEMENT

61 CF (HL) s CHECE, IF SAME AS STRING BYTE.
52 JR NZ.FRE :IF NOT, THEN TRY NEXT BYTE

&3 DJINZ SCAN sCONTINUE UNTIL ALL BYTES FOUND
&4 LD A> ZOH :MUST BE ALL THERE. <O

&5 CALL 33AH sFRINT A SPACE

L6 L HL - {NUPMD :AND FRINT THE

=7 CALL OFAFH s CURRENT LINE NO.

£33 MORE LD IX,\NEXT) :IX= FTR TO MEXT LINE IN F=T
&7 3 MEST s:BACEKE. TO CHECE NEXT LINE
ERROR:= = QG000

100
110
120
130
140
130
146G
170
120
170
=200
210
ZLO
240
250
260
270
220
270
300
310

LISTING 2

R T TRy TR S O C Ty T R I B i 2 1 (B o8 1T % 11 BB 30 122 VRV ERF LRV UST URVEEE RPYPTY PRC PRN SPS U3 TEF £33 723 TI2 133 "E3 v 133 THY PRy OBy T PN eR ape Y R 3

B FIND.BAS o
i FIND UTILITY FOR THE WYZ-200 MICRO

T ORG=7AZZH/ 31272 SYNTAX: FRINT&"STRING"

T NB. STRING LEMNGTH MUST BE 16 CHARACTERS OR LEZSS

T (Cy 1725 CHRIS STAMBOULIDIS

FOFESD3462, 401 FOKESOZES,
FORI=31272TO31332: READ]
IFC{>13013PRINTY C-HEC.Y.J_IM ERRIOR

'.':'2 TEET URP USSR JUMF TO INITIALISE
C=C+J:FOKEL. JtNEXT TSET UFP ROUTINE

Y STOF "ERROR IN DATA LINES

X=U1sR(O) R0 INITIALISE ROUTIMNE
END

DATA 62:175,505143.121,33:57,122.34.147,121.205,77:27

DATA 19%.259:26535,205,140,53,558,214,122,61,350,214,122

DATA 1353, 4.»1;2'3"~x_~1 42,144, 120,221.1246,0.133,32:46,221

DATA 126515153,480,223,221,110,06,.221,102,1,34,176512 1

DATA 2:11.-‘10.~;-..£1 102,3,34,173: 121,221,227, 225.35: 3

DATA 35,35, 205, 124, 4o:17:‘23'2a121:58,214;122,71,33;156
DATA 122.395,124,133.40,130,24,1233:40,17,1%,190,32, 236
DATA 145,241 ,462,32.205%,53,3,42,173,121,205,175, 15, 221

DATA 4%,174,121:24,174

64

PERSONAL COMPUTER GAMES

Rpr &5 3 of3,

Yahtzee dice
loaded!

With reference to Tumbling
Dice by Ron Roberts in the
November issue of APC |
became suspicious of its
“fairness’” when Yahtzees
with ones or sixes seemed
almost impossible. Testing
the random number
expression used
[R=INT(RND(1)*5+1.3]
| found the probability of
getting a one or a six half
the probability of getting
either 2, 3, 4 or 5. The
following program verifies
this claim:
10 DIM N(6)
20 FORI=1TO6:
N(l)=0 : NEXT |
30 PRINT
40 FOR I=1 TO 1000
50 R=INT (5*RND(1)
+1.5)
60 N(R)=N(R) + 1
70 NEXT I
80 FORT=1TO6
90 PRINT T =" N(T)
100 NEXT
May | suggest the more
correct formula
R=INT{6*RND(1)+1)
for a fair game.
W Holland

VZ VARIABLE
DEFINITION

The statements DEFINT,
DEFSNG, DEFDBL and
DEFSTR are not implemen-
ted in VZ-200 Basic
(although the code for these

is in ROM). A way of
simulating these statements,
without having to write great
chunks of assembler, is to
make use of the Variable
Declaration Table located be-
tween 30977 and
31002 (7901-791AH).

The VDT is 26 bytes in
length, one for each letter of

the alphabet. Each location
contains a code defining the
status of variables beginning
with each letter:

2 — integer

3 — string

‘4 — single precision
8 — double precision

On power up and when-
ever a program is RUN, the
whole of the VDT is
initialised to single precision
(ie, each location contains
ad).

The values in the VDT
may be altered to define dif-
ferent variable types. For |
example, if you wanted to
define all A to Z variables as
integers, you would put the
following code at the start of
your program:

10 FORI1=30977 TO
31002 ; POKE I,2 :
NEXT |

This is equivalent to the
‘DEFINT A-Z' statement in
Level Il Microsoft Basic.

Alternatively, the following
formula could be used to
define individual variables:

10 POKE 30912 +
ASC("Q").3

(This would define Q as a

string as in ‘DEFSTR Q'.)

Note that Basic will not
accept double precision
variables as counters in

FOR-NEXT loops. Also note

that it is no longer necessary

to use a suffix of '$' or ‘%’
after a string or integer vari-
able has been defined.

C Stamboulidis

APc Apr 35 £() 108,

VARIABLE
VZ 60T0

The following routine
eliminates those - ‘massive if
then lists like:

IFA=1 OTHEN1 00
IFA=20THEN110
1FA=30THEN120
etc.

After calling the routine,
the variable ‘GT holds the
value of the line to GOTO

To use, simply compute
your line number to GOTO
{or GOSUB) and having com-
puted GT simply GOTO or
GOsSuUB 2

F Olsen

g TO1000 ' ' - | .
? ggTO XXXX:’ MUST LEAVE SPACE AND DO NOT ALTER FIRST TWO LINES

/

?6THéNTs=Ts+CHRs(39)+Ts . GOTO3
% C(MID$(T$,C,1)) :NEXT: GOTO!

2% T$=STR$(GT)

3 T=LEN(T$):IF
4 F'ORC"TOé: "POKE31478+G,AS

The ‘Variable VZ GOTO' in
April APC does not work
due to an esror in line 3.
‘Here is x revision that does:™
0 GOTC1000
1t GOTO012345
2 T$=STR$(GT)

3 IFLEN(T$) <6THENT$=
T$+" " :GOTO3

4 FORC=2TO6 :POKE

- 31478+C,ASC(MID$

(T$.C.1)

3 (NEXT :GOTO1 {

~"he GOTO in line O tan be

any four digit number. If you

warit to start your main pro-

gram at a line numbered

less than 1000, then use

zeroes to make up the four

digits. For example:

0 GOTO0058

To test the routine, enter
these lines:

95 LIST-1000
1000 GT=95, GOTN2
and RUN.

For a variable list, which
can be useful when debug-
ging a program, simply
change line 1 to:

1 LIST12345

e

Lonely hearts
club

In reply to the letter “Basic
Understanding” printed in
the February edition of APC,
I would like to commend

S Hopson on the stand he
has taken for the sharing of
program knowledge. The
computer which he uses as
an example, the VZ-200,
has been greatly dis-
advantaged by its marketing
being limited to Australasia.
This has meant that there..
are very few books and
other publications for it. The
programs printed in
magazines such as APC are
among the few sources
available for programming
knowledge for this and many
other home computers.

It does seem a pity that
more programmers do not
comment on or explain the

' various routines used in
their programs. However,
computer novices should not
despair. LYSCo print a news-
letter for the VZ-200/300,
the Amstrad CPC-464 and
the Commodore 16 and

Plus/4. In the newsletter we
print a host of hints and tips
sent in by its readers and
programmers. Entire pro-
gram listings are printed in
some editions and we
endeavour to answer ques-
tions asked by the readers.
These letters are completely
free to people on our mailing
list. Anyone wishing to
receive the newsletter

should send a large stamped
addressed envelope to
LYSCo, PO Box 265,
Bunbury, WA 6230
specifying the computer they
own.

L Young

APC May 85 €(5)
L $2-53 |

VZ200 VIDEO
HARDWARE
INTERRUPT

This article details how to use the video hardware interrupt on
the VZ200 and gives three simple examples of its usefulness.

THE HARDWARE INTERRUPT is a
very useful feature of a computer’s capabil-
ity, with many different applications. The
usefulness comes from the ability to ‘inter-
rupt’ the normal flow of software execution,
diverting the operation of the CPU by ex-
ternal means. The CPU can then be made
to execute a separate, independent program
before: returning to the original program
execution.

This description may sound like a
GOSUB call to a subroutine in Basic, or a
CALL to a subroutine in a machine code
program, but there is an important differ-
ence. The difference is that the interrupt
can occur asynchronously to the normal
program execution (that is, it can occur at
any time unrelated to the progress of nor-
mal program execution).

This capability is extremely useful when
the computer has to serve some external de-
vice which can’t wait for an action by the
computer during normal program execu-
tion. Such devices range from a digital-to-

analogue converter (which must sample
data at strictly regular intervals), to a soft-
ware clock counter which needs to be incre-
mented by an external hardware clock
pulse. By using a hardware interrupt these
devices can be served almost immediately,
in the time it takes the CPU to complete the
current instruction.

The interrupt is called a hardware inter-
rupt because there is a special pin on the
CPU chip itself, which, when taken to
ground potential (low or zero), initiates the
interrupt sequence. This action is also per-
formed by some external hardware device.

The VZ200 uses a Z80 CPU chip, which
has three different responses to this inter-
rupt signal depending on the interrupt mode
set in the internal interrupt register (IR).
Note that we are talking about the INT
case, not the NM1). For the VZ200 the in-
terrupt register is set to interrupt mode 1
(by an IM1 instruction) during the initializa-
tion sequence.

The response to an interrupt in Interrupt

109' 3

Steve Olney

Mode 1 is to complete the current instruc-
tion, save the program counter register
(PCR) contents on the stack (allowing re-
sumption of execution at that point upon
returning from the interrupt) and then jump
to location 0038 HEX. This could be viewed
as a hardware version of the software
RST 38 instruction.

The VZ200 video interrupt

Those of you who have access to a circuit
diagram of the VZ200 will see that the inter-
rupt pin (pin 16 INT) of the Z80 CPU is
connected to pin 37 (FS) of the 6847 video
controller chip. Reference to the 6847 data
sheets shows that pin 37 of the 6847 chip is
the video field sync output pin. This pin is
pulled low by the 6847 chip during the verti-
cal retrace period of the video output signal.
That is, the field sync output pin goes low
every 1/50 of a second (video frame rate of
50 per second) causing the Z80 CPU to be
interrupted and diverted to location 0038
HEX every 20 ms.

Scrutiny of the machine code (in ROM)
at location 0038 HEX reveals a JUMP in-
struction to location 2EB8 HEX. This jump
is referred to as interrupt vector.

The machine code at 2EB8 HEX contains
several CALLs to various locations before
returning to the original program execution.
I haven’t looked at these in detail, but most
likely they are concerned with cursor con-
trol and perhaps screen scrolling during
listing.

In any case, the code in which we are in-
terested is near the start of the code at2 EB8
HEX. The first CALL after saving affected
registers is to location 787D HEX. There
are two interesting points to note here. The
first is that location 787D HEX is in RAM,
and secondly, this is the memory location
referred to in the VZ200 Technical Manual
(under System pointers) as the “interrupt
exit”.

By PEEKing location 787D HEX (egp

ETI May 1985 — 99

LISTING 1
HEX CODE MNEMONIC
(25 PUSH AF i Save 'AF' register because we alter 1t
3E 2A LD A, 2AH { Load 'A' register with code tor "%
32 IF 78 LD (781FH),A § Put i1t in the top right-hand corner of screen
F1 POP AF i Restore 'AF’' register
ce RET i Return
LISTING 2
18686 S= -32768 : F = S ¢+ 7 START AT 8888 HEX
2686 FOR I = S TO F POKE THE 8-BYTE MACHINE CODE PROGRAM
309 READ D INTO MEMORY STARTING AT 8888 HEX =
EY-T] POKE I,D =
588 NEXT I
698 POKE 39846,898 ENTER THE START ADDRESS OF THE MACHINE
7868 POKE 38847,128 g :' CODE PROGRAM INTO INTERRUPT JUMP
888 POKE 38845,195 +* EXIT AT 787D HEX.
9868 DATA 245,62,42,50,31,112,241,2081:°' “DECIMAL EQUIVALENT OF HEX
LISTING 3
HEX CODE MNEMONIC
FS PUSH AF i save registers
o5 PUSH BC i we destroy
ES PUSH HL i
3A 3B 78 LD A, (783BH) | load latch contents
26 98 LD B,8 i bit counter
21 18 78 LD HL, 7818H i start of screen display
17 LOOP RLA i rotate into carry and test
38 87 JR NC, ZERO i
36 31 LD (HL) ,31H i output "1’
23 INC HL i adjust to next display position
1@ F8 DJINZ LOOP i 90 until all bits are done
18 B85 JR EXIT i exit 1f done
36 38 ZERO LD (HL),38H § output '8’
23 INC HL i adjust to next screen position
18 F1 DJINZ LOOP i 90 until all bits are done
El EXIT POP HL i exit
c1 POP BC i
F1 POP AF I
c? RETURN i
LISTING 4
188 S= -32768 : F = S +« 29 : 'START AT 8888 HEX
208 FOR I = S TO F :' POKE THE 8-BYTE MACHINE CODE PROGRAM
389 READ D INTO MEMORY STARTING AT 8888 HEX
LY-1%) POKE I,D
S8 NEXT 1 -
688 POKE 39846,989 * ENTER THE START ADDRESS OF THE MACHINE
788 POKE 32847,128 :" CODE PROGRAM INTO INTERRUPT JUMP
888 POKE 398845,195 " EXIT AT 787D HEX.
988 DATA 245,197,229,58,59,128,6,8
16868 DATA 33,24,112,23,48,7,54,49
1188 DATA 35S,16,248,24,5,54,48,35
1260 DATA 16,241,225,193,241,2081
.

100 — ETI May 1985

2 °$3 3 .

PRINT PEEK(30845]) you should find it
contains 201 DECIMAL (0C9 HEX) which
is the Z80 RETurn instruction.

Using the video interrupt

Let’s just back up to summarize what
we’ve discussed so far. Every 20 ms the Z80
CPU is interrupted by the 6847 video con-
troller chip. The interrupt mode (mode 1)
causes the Z80 to jump to location 0038
HEX. From here execution jumps to 2EB8
HEX where a CALL to 787D HEX is en-
countered. Location 787D HEX (in RAM)
contains a RET instruction and so execution
returns immediately and continues until
2EDA HEX where a return from interrupt
instruction (RETI) is found. Execution is
now RETurned to the original program
flow.

Now, because location 787D HEX is in
RAM, we can change the RET instruction
at that location to a JUMP to some other
selected location. At this location we can_
insert our own interrupt servicing code.

Here is a very simple example to illus-
trate this procedure. Starting at location
3450 HEX in the Basic ROM is a subroutine
which generates the ‘beep’ whenever you
press a key. We can alter location 787D,
787E and 787F HEX to contain a JUMP to
3450 HEX to execute this ‘beep’ routine
every time a video interrupt occurs (every
20 ms).

To do this we POKE the following
machine code into memory starting at loca-
tion 787D HEX:

Mnemonic
JP 3450H

Hex Code
C350 34

Note: Remember location 787D HEX is
CALLed every 20 ms, so you must not alter
the RET at this location until you have ent-
ered a valid jump address in the following
two bytes. Otherwise the Z80 will jump to
some indeterminate address depending on
what random data was contained in 787E
and 787F HEX.

The following strict order should be used:

POKE 30846,80 (POKE 50 HEX into

location 787E HEX)

POKE 30847,52 (POKE 34 HEX into

location 787F HEX)

POKE 30845,195 (POKE C3 HEX into

location 787D HEX)

Type in the above commands via the im-
mediate mode (without line numbers). The
text within the brackets should not be typed
in as it is for information only.

Once you have done this you should hear
an almost continuous beep from the internal
speaker. Notice that there is nothing which
interferes with this beeping. Well, almost
nothing, as will be explained a little later.
However, you can enter a Basic program as
normal (except for the distraction of the
beeping) and even RUN or LIST it. In fact,
you can do all the normal operations (ex-

cept tape operations — see below) without
affecting the beeping. This is because the in-
terrupt has priority over other software ex-
ecution. So we see it is possible to have a
Basic program running in the ‘foreground’
with a separate machine language program
running in the ‘background’ being executed
at regular intervals.

To stop the beep all that is necessary is to
change the JUMP instruction (0C3 HEX) at
location 787D HEX back to a RET (0C9
HEX) by:

POKE 30845,201

Tape operations

As mentioned earlier, there is another ac-
tion which will disable the ‘beep’. During
tape operations, interrupts are disabled to
ensure that accurate timing delays in the
tape function’s machine code are not dis-
turbed. So while you are CSAVEing,
CRUNning or CLOADing data to or from
tape the beeping will stop. However, once
the operation is over the interrupts are
enabled once again and the beeps return.

To enable the ‘beep’ again, enter —

POKE 30845,195
Note: Before typing the above, make sure
that locations 787E and 787F HEX contain
the correct jump address (3450 HEX)!

Non erasable video display

Next we’ll look at an example which
shows how the video interrupt can be used
to put ‘non-erasable’ information on the
video screen.

Normally, any information displayed on
the screen can be overwritten, cleared or
scrolled off the screen, either during pro-
gram execution or in the immediate execu-
tion mode. By using the video interrupt you
can display information which cannot be
overwritten.

The machine language source code is
shown in Listing 1.

Use the Basic program shown in Listing 2
to enter and then to enable the machine
code program shown in Listing 1.

After you have entered Listing 2,
CSAVE it before RUNning it. You should
see an ‘*’ in the top right-hand corner of the
screen. Try to erase this by any means you
like and you will find the best you can do is
to erase it momentarily (in fact a maximum
of approximately 20 ms, the time taken be-
tween successive interrupts). The only way
to erase the ‘*’ is to disable the interrupt
itself, or to disable the machine code
program by:

POKE 30845,201
which POKEs a RET instruction (0C9
HEX) back into location 787D HEX.

Real-time system pointer
display

When programming in Basic a useful fea-
ture would be to see a constantly updated
display of various system pointers (eg start

of program, end of program, start of free
space etc) to aid in keeping track of the pro-
gress of these parameters.

To illustrate this principle simply, we will
display the contents of the output latch. A
copy of the latch contents is maintained at
location 783B HEX (307779 decimal). The
latch controls the following:

BIT FUNCTION 0 1

0 speaker O/P #1 see note below

1 unused o

2 cassette O/P toggles according to data

orpP

3 mode control Mode 0 Mode 1

4 background colour green buff

5 speaker O/P #2 see note below

6 unused

7 unused

Note: During a key press ‘beep’ or execu-
tion of the SOUND command, the software
toggles bit 0 and bit 5. When it does this, it
first looks at the state of each bit and then
inverts that state. Normally each bit (0 and
S) are the complement of each other, and
the inversion of both at the same time gives
a ‘push-pull’ like drive signal to the speaker.
However, if both bits were the same, there
would be no differential change when they
are inverted, and so no output. You can
therefore disable the ‘beep’ and the
SOUND command by looking at both bits
and then POKEing a value into location
783B HEX (30779 decimal) which makes
them equal. That is, if the contents of 783B
HEX are even, then POKE back into 783B
HEX a value equal to (contents + 1). Con-
versely, if the contents are odd, POKE back
a value of (contents — 1).

Getting back to the latch display — to in-
dicate the state of each bit, we will display a
‘0’ or ‘1’ for each bit in the top right-hand
corner of the screen.

The machine language source code is
shown in Listing 3.

The Basic program in Listing 4 will enter
and enable the machine code program of
Listing 3. Note that Listing 4 is similar to
Listing 2, so if you have already entered
Listing 2 you can modify it to Listing 4.
Once again, enter the Basic program (List-
ing 4), and CSAVE it before RUNning it.
You should see the contents of the output
latch displayed in binary in the top right-
hand corner of the screen, reading from left
to right, starting with bit 7 across to bit 0.
Change the background colour (COLOR,0
and COLOR,1) and note the change in bit 4
in the display.

Cursor position pointer

Edit line number 900 to:

900 DATA 245,197,229,58,166,120,6
ReRUN the program.

This will display the horizontal cursor
position pointer (0-31) from location 78A6
HEX (30886 decimal). Use the left/right
cursor position arrows to move the cursor
and observe the display.

Basic program pointers

Now edit line number 900 to:

900 DATA 245,197,229,58,249,120,6
ReRUN the program again.

This will display the LSB (Least Signifi-
cant Byte) of the ‘end of Basic program’
pointer. Try adding extra lines to the Basic
program and note the change in the display.
For example, add the line:

1500 REM TEST
Note down the binary value displayed and
then edit line 1500 to:

1500 TEST
Compare the new display value with the
previous value.

This exercise reveals that although the
short form remark symbol (’) occupies two
screen spaces less than the long form REM
command, it needs two more program me-
mory spaces to store it than the long form!

What next?

These given examples are very simple
ones designed to illustrate the basic princi-
ple of using the video interrupt and do not
show the full potential of the technique. I
have written two programs which utilize this
technique in a more complex fashion. The
first of these is a real-time clock which is
controlled by the internal clock of the
VZ200. This gives a digital readout display
in the upper right-hand corner of the
screen. The real-time clock is implemented
entirely in software (no need for extra hard-
ware or modifications).

The second program demonstrates a
split-screen graphics mode with one part of
the screen having text and lo-res graphics,
with the remainder in hi-res graphics.

Other applications

These are but a few of the many possible
uses of the video interrupt. Other applica-
tions include:
® arcade games — synchronizing move-
ment with the video raster rate to give
smooth action. Mixed hi-res graphics and
text for scoring, simulating instrumentation
etc;
® stopwatch — event timer or lap-scorer;
e frequency counter — using the internal
VZ200 clock to give the timing gate period;
and

o real-time control — using the VZ200 as
acomponent in a control system, eg burglar
alarm.

The list could go on, as anything which
requires a reasonably accurate time-keeping
function or synchronization with the video
display, is a possible candidate. Which all
goes to show that it’s not always rude to
interrupt! o

ETI May 1985 — 101

30862, 241 F1H
— 3, /a3 5FH.
START add.

-28(31 = 3634q
—2&(74 2 3636

24.5% 7% LD HL, JomeH %2809 P
B} LD DE, 7emi W % 286732 M
oy FF &y 42 8¢, 7 FEH }%2047) S
3¢ss D (HL), SsH ;% 3rD U

VZ-200
instant colour

This short machine code
routine will turn the screen
the colour you have put in
the data — instantly!!

To call the machine code
routine type X=USR (0)

where needed in your
program.

To get different colours
you change the underlined
number in the data.

The numbers for the dif-
ferent colours are:
O=GREEN 170=BLUE
85=YELLOW 255=RED

A Willows

-00030 NEXT

00010 FORI=-28687 TO -28474
00020 READA:POKEI,A

00040 DATA33.0.112,17,1,112,1
» 233,7,34,83,237,176,201
00030 POKE30862,241:POKE30863, 143

LDIR I Y(Ph)' var-’ Btt‘Q
CQI RET
LDT Qssiym (He) +a ('.ps)x\
" ML 6’90.)(
~e Move,
ne D€
oo , B¢

et’g.) undd BC =R
—————————

(l_-:\dr top .:C,NM“:’ haton }adn;\’

Page 130 Australian Personal Computer

type in the listing, either at

BACKGROUND
/4

One of the limitations of the

VZ-200 is that it has only

two background colours in
each mode: green and
orange in mode O, buff and
green in mode 1. This short
machine code program fills
the screen with any desired
character in either mode O
or 1, making any of the

the start of another program
or on its own, and CSAVE it
RUN the program and, to fil
the screen, POKE the code
for the desired character into
location 28672 (start of
screen address) and enter
PRINT USR(O). In mode 1
and colour O, O gives a
green background, 85 gives
yellow, 170 blue and 255
gives a red background. In
mode 1, colour 1, buff =0,
cyan = 85, 170 = orange

Prey” e, Le. st /9“]""3 . eight foreground colours and 255 = magenta.
available as a background.
To use the program just | Williams
Basic listing:
10 TM=PEEK(30897)+256*PEEK(30898)-20 !
' LD 6 A ‘ SAVLI..\ B 5 - | |
7 J 1 20 POKE 30897, TM-INT(TM/256)*256:POKE |
. 30898,INT(TM/256)
! LMD HL a H St vides
21 =8 g8 TR ‘ 30 TM=TM-1:A=TM-65536
TR YN LD DE IRaH | emd vk 40 FORI=0TO 15
50 READ D:POKE I+A.D
o LD (wL), 6. 60 NEXTI e
70 POKE 30862, TM-INT(TM/256)*256:POKE
23 INC ML 30863,INT(TM/256)
80 DATA58,0,112,71,33,0,112,17,0,120,112,35,
DF RST 18 H s SRedGL 3D 223,32,251,201
20 FAR IR NZ) FBH ;f\‘unp Ay halu!l.
Co RET APC May 15 £(s) p no.
Crrmpp o gt ;4.; ““ts-’}i&-l 72
PDDEnDUm. 25 CLEAR 5o ! Rused shack ph
30 Tm=Tm+di A= Tm=6s73¢,

19 REM"LOOP

20" As=INKETS :A$=INKETS

' 30 IFA%="L"THENGOSUB6G" INSERT
48IF As$=":"THENGOSUBSG" INUERSE "

:SOUND 29, 1

- 5@ GOTOo20"L0pP

" GOREM* INSERT
70 PRINT"INSERT" :SOUND33, 2 :RE TURN
89 REM" INVERSE
99 PRINT"INUERSE" :RETURN

Sampile listing

APc P 130-3.

Reversed REM

Labelling subroutines with
REM statements that
describe the functions of the
subroutines is obviously
helpful to the programmer
who has trouble remember-
ing what parts do what
when designing a long
program.

One way to make the sub-
routines stand out in the
LISTing is to use inverse
REM statements. But the VZ
computer will not straight-

forwardly accept REM
statements in inverse print
— such REM lines are not
entered into the LISTing
when return key is pressed
and the SYNTAX ERROR?
MESSAGE displays.

This can be simply over-
come by preceding an
inverse REM statement with
quotes.

120 REM”AN EXAMPLE
end quotes are not needed;
the underlined characters are
in inverse form — do not
inverse the word REM!

Having suitably named our
subroutines, wouldn't it be
great if we could call those
subroutines by name instead
of GOSUB a line number?

The VZ does not imple-
ment procedural calls, but
we can simulate this desir-
able feature by placing the
name we have given the

subroutine immediately after |

the GOSUB number:
30 GOSUB120"“AN

EXAMPLE"
and because the name is in
inverse form here also, it
stands out clearly in the
LISTing that this is a call on
that particular subroutine. In-
the case of a GOSUB you
must use end quotes also if
any further statements
follow the GOSUB on the
same program line.

GOTO can be treated in
the same way — simply give
a REM name to the block of
code you GOTO.

R Quinn

A list of Benchmarks used when evaluating micros Is given below.
An explanation can be found In the February ‘84 issue.

100 REM Berchwmark 1
110 PRINT ~S”

120 FOR K= 1 TO 1000
130 NEXT K

140 PRINT “E”

150 END

100 REM Bedwnark 2
110 PRINT “S”

120K=0

130 K=K+1

140 IF K<1000 THEN 130
150 PRINT “E”

160 END

100 REM Benchmank 3
110 PRINT “S”

120K=0 -

130 K=K+1

140 A=KK*K+K-K
150 IF K <1000 THEN 130
160 PRINT “E”

170 END

100 REM Bernchmark 4
110 PRINT S~
120K=0

130K=K+1

140 A=K/2*3+4-5
150 K<1000 THEN 130
160 PRINT “E”

120 END

100 REM Bevchmark 5
110 PRINT “S”

120K =0

130 K=K+1

140 A=K/2*3+4-5

150 GOSUB 190

160 IF K<1000 THEN 130
170 PRINT “E”

180 END

190 RETURN

100 REM Benchmark 6
110 PRINT “S”
120 K=0

130 DIM M(5)

140 K=K +1

150 A=K2*3+4-5

160 GOSUB220

170 FORL=1TO 5

180 NEXTL

190 IF K<1000 THEN 140
200 PRINT "~

210 END

220 RETURN

100 REM Benchmark 7
110 PRINT “S"”
120K=0

130 DIM M(5)

140 K=K+1

150 A=KR2*3+4-5
160 GOSUB 230

170 FORL=1TOS
180 M(L)=A

190 NEXTL

200 If K<1000 THEN 140
210 PRINT “E”

220 END
230 RETURN

100 REM Benchmark 8
110 PRINT “S”

120 K=0

10 K=K+1

140 A=KA2

150 B=LOG(K)

160 C=SIN(K)

170 IF K<1000 THEN 130
180 PRINT “E”

190 END

Page 218 Australian Personal Computer

VZ DELETIONS

The VZ-200 computer is

a much more powerful
machine than appears. Many
of its facilities slumber
because someone has made
a marketing decision to
restrict Basic access to cer-
tain facilities. Here-is how
one of them can be
awakened.

DELETE is a Basic editing
command that allows you to
erase a block of Basic lines
from a program in one go,
instead of having to
eliminate them one by
one by entering each line
number and pressing the
return key.

Suppose, for example, you
want to delete lines 250 to
530 from a program. Add
this line to your program:

0 D250-530

Now enter the following
commands and press the
return key:
POKE31469,182:RUN

If you now list the
program you will find the
absence of all those lines

you desire to be rid of.

The content of line O will be

invisible. Having accom-

plished your goal you can
delete line O in the conven-
tional way — enter O and
press return.

O D-x where x is an end
line number will, when the
above POKE is made and the
program RUN, eliminate all
lines from the first line
in the program (which of
course will be line 0:) to
line x.

On another matter, try this
line:

10 FORR=5T0485STEP32:
PRINT@R,”"; :INPUTA:
PRINT@R+16, "A=";A:
NEXT

What it shows is that
PRINT@ and INPUT state-
ments will not work together
on odd numbered lines
(counting down the screen
0,1,2....,16). A numerical
INPUT will always return O;

-a string INPUT wiill return

the null string. So take care
when programming with
these two statements.

R Quinn

Australian Personal Computer Page 147

VZ EDITOR/
ASSEMBLER
TIPS

To enter hi-res mode (mode
(1)) in assembler set bit 3 of
address 6800 H(26624) to
1. For example: - °
LD A,(6800H) ; Load A with
content of 6800H
OR8; SetBit3 of Ato 1
LD (6800H).,A ; Load new
information back
LD (783BH),A ; into 6800H
and 783BH
If you want to change the
background colour to buff
(normally it's green), instead
of [OR 8], as above, change
that to OR 24 (setting bit 4
to 1).
(783BH) is the copy of

(6800H). It is important to
load A into (783BH) if you
want to use the sound
driver routine in ROM,
because the SDR does a
Read (783BH) to see what
mode you are in, and loads
that into (6800H).

To Call the sound driver

_ routine

LD HL, Frequency
LD BC, Duration
Call 345CH

Before returning back to
the Editor/Assembler use
the program below to clear
bit 3 of (783BH). If you
don’t, the screen will change|
to mode (1) (hi-res) when
you use [Tape Save] in the
Editor/Assembler.
LD A,(783BH)
AND 247
LD (783BH).A
T Lam

A.PC. J(N) .

P 1¥9 ,

LOW COST PROGRAM
GIVES VZ200/300 FULL
LEVEL Il BASIC

Ever wished that your little VZ200 or VZ300 would run full
Microsoft Level Il BASIC instead of just a stripped-down
version? You needn'’t wish any longer thanks to an

enterprising local programmer.

REMEMBER STEVE OLNEY? If you're |

a VZ200 or VZ300 owner and BASIC
programmer, you should. We’ve published
at least three of his articles so far, mainly
on resurrecting dormant functions and
statement keywords in VZ BASIC. One
was in the March ’'84 issue, another in
October 84 and the last in May ’85.

Steve’s a very knowledgeable guy when
it comes to the VZ200/300, in terms of
both software and hardware. He’s spent
quite a lot of time burrowing into its little
secrets, and probably knows as much
about it as anyone in Australia.

I know that sounds a bit like paeaning
in his pocket, but I've just been trying out
the latest fruit of his labours. And this
time it’s not just an article showing you
how to restore a few more missing func-
tions to VZ BASIC. It’s a machine lan-
guage utility program that restores pretty
well the whole blinking lot for you — in-
stant Level II BASIC! Hence my little
paean of praise.

Steve calls his new utility Extended
BASIC Version 2.2, or ‘EXBSV2.2’ for
short. It is available on either cassette
tape or disk, to suit both basic and ex-
panded VZ systems. It is also compatible
with both the VZ200 and VZ300, and with
the current Disk BASIC (V1.2 DOS).

You load EXBSV2.2 into your VZ be-
fore you load in anything else. It is only
about 1600 bytes long (about 1.5K) and is
fully self-locating, finding the top of avail-
able RAM and installing itself there. At
the same time it lowers the BASIC ‘top of
RAM’ pointcr to prevent any other pro-
grams from being loaded over it.

As part of the installation it patches it-
self into ROM BASIC, in much the same
way that Disk BASIC does, to become

94 — ETI November 1985

transparent to the user. All at you’re
aware of is that the RAM i$ now about
1.5K smaller than before — plus, of
course, the fact that your trusty VZ now
responds to no less than 25 new BASIC
commands!

Of these 25 new commands, 23 are basi-
cally resurrected Level II commands that
have been sleeping there all the time in
the VZ's ROM, quietly waiting for
EXBSV2.2 to sound the trumpet. They're
listed in the table. The other two are ex-
tras — a bonus that Steve Olney has
thrown in for good measure. And very
handy thay are too: MERGE, to allow
you to combine programs and routines,
and RENUM to let you rationalise and
tidy up a program whose line numbers
have become a mess after a lot of editing
and patching (or after using MERGE).

All of the 25 new commands are fully
functional, and when used in a program
can be LISTed — at least on any machine
with EXBSV2.2 loaded. All but two of
them will even RUN on a VZ which does-
n’'t have EXBSV2.2 loaced! The two ex-
ceptions are ON and ERROR, which arise
because of a conflict in token codes (nor-
mal VZs use the normal ERROR token
for the added command SOUND).

Even here Steve Olney has provided an
answer, for those who really do want the
Level II programs they generate to be
capable of running on plain-vanilla VZs
(how helpful can the guy get?). He’s done
this by providing the listing of a short
BASIC routine which you can MERGE
into the top of your programs after they’re
finished and debugged. You then use it to
convert your finished programs

When it has finished, you DELETE the

| routine itself (notice that?) and CSAVE

102 2.

Jim Rowe

the converted program. It won’t LIST
properly any more, but it will now RUN
on a VZ without EXBSV2.2 installed.
There’s just one tiny catch: you can’t use
the construct ‘IF <expression> THEN
ERROR <n>’ in any program that you
want to convert in this fashion. You can
only use ERROR in the ‘ON ERROR
GOTO’ construct. Not a serious limita-
tion, but worth remembering.

But back to EXBSV2.2 itself. Normally
you’d expect to load this into your VZ
every time you turn it on, which is easy
enough and only takes a couple of seconds
with the disk system. And with the utility
installed, all of the new commands are at
your disposal.

It’s great to be able to use direct com-
mands like DELETE, AUTO, TRON and
TROFF, RENUM and MERGE. How did
we ever get along without DELETE? It’s
so damn useful — not to say virtually es-
sential when you want to scrub a whole
range of program lines.

Then into the actual programming. It’s
really good to be able to use double-preci-
sion constants and variables again. Plus to
be able to define variables as integer, sin-
gle, double or string type using DEFINT,
DEFSNG, DEFDBL and DEFSTR. It’s
also much neater to be able to use ON-
GOTO and ON-GOSUB, instead of a
flock of IF-THENs. Not to mention being
able to use ERROR, ERR and ERL. It’s
nice to be able to use RESUME and
RANDOM, too.

Of course there’s also FIX, FRE, and
MEM — plus familiar old mates like
CINT, CSNG and CDBL, POS§ and
STRINGS (handy in setting out screens,
that one — I missed it). And of course the
very versatile VARPTR. Wheee! Makes

you feel a bit like Uncle Scrooge let loose
in the Mint (well almost).

All of the new commands and functions
seem to work perfectly. 1 certainly
couldn’t find any bugs, anyway — if there
are any, they’re pretty well hidden. From
a functional point of view, my VZ now
behaves like any other Level II machine.

So thanks to EXBSV2.2, Steve Olney’s
little genie, you can now trundle out all
those old TRS80/System80 programs and
get them running on your trusty VZ. The
graphics will need a few mods, of course,
but the programs themselves will be fine.

And the cost of this magic ute? A mere
$15 for the tape version, or $22 for the
disk version. Both prices include packing
and postage, and EXBSV2.2 comes com-
plete with a set of driving instructions.
You couldn’t get much better value for
money — obviously Steve Olney is not out
to rip anyone off.

I’ve only got one complaint. Couldn’t he
have given it a name that’s easier to pro-
nounce and type, like ‘Jeannie’? Try typ-
ing EXBSV2.2 all the way through a re-
view, and you’ll know what I mean!

Still, whatever he cares to call it, it’s a
utility that almost every VZ programmer

TABLE 1. WHAT EXTENDED BASIC PROVIDES

System Commands:

AUTO automatic line numbering for program entry

DELETE delete a line or group of lines

TRON enable trace function (for debugging)

TROFF disable trace function

MERGE merge tape program with program in memory

RENUM renumber program lines

BASIC Statements:

DEFINT define variable as an integer

DEFSNG define variable as single precision

DEFDBL define variable as double precision

DEFSTR define variable_as string type

ERR error code

ERL line in which error was deleted

ERROR used to simulate an error condition

ON-GOTO branch to one of several line numbers depending upon the value of an
expression

ON-GOSuB branch to one of several subroutines depending upon the value of an
expression

RANDOM reseed random number generator

RESUME continue program execution after error handling

BASIC Functions:

CINT convert variable to an integer

CSNG convert variable to single precision

CcDBL convert variable to double precision

FIX return truncated integer part of a number

FRE returns the amount of free memory remaining

MEM returns the amount of free memory remaining

POS returns the current screen cursor position

STRINGS returns a string of specified length

VARPTR locates a variable in memory

s
is going to want. And at this stage you can
only get it direct from Steve Olney at 200
Terrace Road, North Richmond, NSW

2754. 1 only hope that his local post office
is prepared for the onslaught.
- ®

ETI

Nov. 3¢5

VZ USER
GRAPHICS

1000 A=44800:B=65536
1010 READ C:IF C=1THEN
1070ELSEPOKEA-B,C
:A=A+1:GOTO1010
1020 DATA245,197,213,
229,33,0,0,17,0,0
1030 DATA14,8,26,119,
. 35,19,26,119,6,31
1040 DATA35,5,120,254,
0,194,20,175,19,13
1050 DATA121,254,0,

194,12,175,241,193

1060 DATA209,225,
2011

1070 POKE30862,0:POKE
30863,175:RETURN

This routine will provide

any VZ programmers with

the ability of creating their

own definable high resolu-

tion characters in 8x8 pixels.

For example
00000011 11000000
00001100 00110000
00110011 00001100
11000000 . 00000011
00110000 11001100
00001100 00110000
00000011 11000000
00000000 00000000 |
|
[
|
|
|
|
Refer to the technical

manual for more details on
high resolution graphics.
To activate this routine, you

_your user definable graphic

simply poke the starting
address of the code for your
user definable graphic into the
memory location 44808/9
and the screen position of

into the memory location
44805/6.

Sample Program

5 GOSuUB 1000
10 FOR T=45000 TO
45015
20 READ S:POKE
T-65536,S

30 NEXTT
40 POKE 44808-65536,
200:POKE 44809-
65536,175
50 POKE 44805-65536,
0:POKE 44806-
65536,112
60 MODE(1):X=USR(0)
70 GOTO 70
1080 DATA 3,192,12,48,
51,12,192,3,48
1090 DATA 204,712,483,
192,0,0

RT3 IR EUEE.] ‘i“ﬂlc
AFon Fs ; Save veq. AFI" FE xq LQP g H 4 Se 'A),

N o\l. Lu» ;\
~ %t Cs bo dack, |v 1q C21a AFLTP n2 ATIAH o Buopins
¥2 Ds wC 13 INC OF nt grephics ches.

“ 2 ;
J‘Lt. pkﬁr ,Cou\s')u- .
wa3 Es - N
vR4 208m R LD HL oK seriem posn. | © IE 19 b .
’ ’ \' " F FeE s 3\,‘ CR.)’
) Cs AT Ly Ds, AFCS H : vser dak. grephia| v | wo ; >
«qQA WE X8 > C 83 H. ; ¥ Lyks-pases, |n 2 C29C Af TP N2 AFRCH | 95~ poiv,
~ye 14 > A, @F) ; cheithe A |w 28 G 4
‘.: “ C Pop 8c NCovre ? -
w QD 77 -g LD (HL)) A " JVlnchv ;5 Sereem | 2 ! o -‘-9
vyF a3 5 INC HL ;ux’, sevn oo, |®R€ Dy Pos DE vesdore Cran
! . nax} ehe, w27 E PoP WL stek,
vaf B3 ; >
R 1A 2| 2 A, (DE) ;mxh havith A. |28 Cq £
‘) | Comn AFCEN
. g§xa L")ﬁ o en
nM LD (HL)) A .l Lsveo '
] , ') |
w12 N¢IF LD B, jFH, B=31D. ({F} and P.,\‘t vk onte o '}o’) LB cormar o ;(/u,h
. ¢ .
* k23 J| Inc HL ;Y Soom pos. o otk Posa. o dehemming by AfO /(.
5 35 ;: DEC 6 8-6-1, N.)’ [N ,’..;;(“\“"3 o 3.“’. Prg’..e,.\ Lul’
- . ’
¥ ‘) ohN(_la (Nﬂ\)‘ Po‘hqm")lﬁ(._ c
h Lp» P 8 . A. ;ns Soma P
T > sprides.

7;75 s - pa;-/J (Itbqn)‘
if o

Jo bw bwel subrackins ¢ Yu\\'nn.d,

procudure Aumbe- of calls
(’Tj:h hdl;\s J‘vasu);d 17 o'rqupv\'

VI & FoA-~NExT luy L load oIMLaB

.p Pill.n\’ an ar UM‘)' ‘*g }L\
;UL'OV\;& L—k;n’ Q.MLA.
(‘Q} ‘lS fQSJCJ. 7:& q'sUM} ” S“’ovd H

488 msd N
3189 ¢ 3lolo (7‘5"' H e 7922 H) Ihis
mdhed pans A sheek addrss of Ha requww
Wy ﬂh
RETywm in W sibrovdimn callld g0 hack

Is

USVQ": o JVMM3

Via

8Asce .

MACHINE
LANGUAGE
CALLS

This simple VZ200/300
routine can save program-
mers from using lots of
POKE commands in a Basic
program when calling a

lot of machine code sub-
routines.

Conventional method:

| To call the address 1.3392

& 13404

10 POKE 30862,80:POKE
30863,562

20 x=USR(0)

30 POKE 30862,92:POKE
30863,52

"1 POKE 52994-65536,

'5'POKE 53002-65536,14:

40 X=USR(0)
New method:
10 X=USR(13392):
X=USR(13404)
Main program:
O POKE 52992-65536,58:
POKE 52993-65536,33

121:POKE 52995-
65536,50
2 POKE 52996-65536,13:
POKE 52997-65536,207
3 POKE 52998-65536,58:
POKE 52999-65536,34
4 POKE 53000-65536,121
:POKE 53001-65536,50

POKE 53003-65536,207
6 POKE 53004-65536,195
:POKE 30862,0
7 POKE 30863,207

Australian Personal Computer Page 127

NW N'H\od .

- ——— a4 b 2 o s

CfFxy 3A 2 19
13404 T 34SCH sh.odd, fom genete Sow, 3 32 W CF
(m ary &Ho Sb‘af..lu Rom vd as sxﬁng(ﬂ_’ . \:6 3A 22 7q
hés o poks g 32 NE CF
ha . p CFATQC C3 nn nn
3 pebu (158)mss)
20 eaf 4o,
- e
o M Svmpd e
LD

He 5 7921 H
se (W)

S'zo,qz'-(rn(= =544 2
‘3’3004-\(:’:3(z =123 = CF‘aCH
(ne)'t. ot raxt 4o Lg‘lu are 0 qlu)

CEarH

3 I3 ”\3&3

IS bya in all,

LD A (792_1 H>
LD {CF’Q]ND) A
td A {-sz H)
1> (cryFw) A

JP . Annn

7‘;1 #r ﬂvsuM}' Puld Ly J-Ln
USKH commaend ¢ Fead Yrom 7q1|\1- H
and LmHe 1nte CF QD\E N whieh ‘l'L-\

’}I‘: SIM.PLQ\.;J *L. Matm 'I.M pre’\"t&

From: Australian Personal Computer November 1983
Vol. 4 No. 11 p89-95

Revised: Australian Personal Computer March 1986

Scanned: Bob Kitch February 2021 at 400 dpi

Composited: MicroSoft Publisher 2016

Size: 600 x 820 mm

VZ200

VZ-200 CASSETTE INLAYS

s progiam s lor all you VZ-2000300 uscts who have prles of
Cavselte tapes and want 1o ndex their contents su it's casy to hind
what you want This program uses the PP-40, & pantedplotter
distiibaated by Dk Simith, and makes eatensive use ol the graphics
comtaand suppotted by tus ponter The program contams com-
mcnly lor those users undandiar with the required camimands, and
fon those who are thinking of converting the progiaim
tan Dutheld,
Crome, NSW

5 GOsSUB 1808 *TITLE

19 *CASSETTE TAPE INSERTS

20 ’BY IAN DUTFIELD

23 'FOR THE U2-208

30 ¢ 16/3/85

40 . *FOR USE WITH PP40

50 PRINTER

b8 USE IN 4@ COLUMN MODE

0 PSET PRINTER TO TEXT MODE

/5 7 CAN BE COMUERTED TO OTHER
PRINTERS.

8U LPRINT CHR$(12)

90 PCR AND L INEFEED

100 LPRINT CHiks (1 3)

IO LPRIND CIR$0109)

120 *SET CULOUR TO BLACK

138 PFIRST GO INTO GRAPHIC MODE

149 LPRINT CHR$U18)

th0 LPRINT "CB"

OB TRETURN TO TEXI

/8 1PRINT CHR$(1./)

VZ200

180
190
200
210
220
230
240
245
255
260.
270
280
290
300
310

315
320
321
322
323
324
325
326
327
328
329
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

LPRINT " xXX CASSETTE INLAYS
LPRINT " ‘

» INTO GRAPHIC MODE TO
» PRINT NUMBERS AND LINES
LPRINT CHR$(18)
LPRINT “Sk" -

» SET SIZE

' PRINT NUMBERS
LPRINT "P1."

YDRAW LINE

LPRINT "J446,0"

» GO BACK TO PRINT NUMBER
LPRINT "R-200,0"

' PRINT OTHER NUMBER.
LPRINT "P2."
LPRINT"R-292,-30"
LPRINT"P3. "
LPRINT"J446,0"
LPRINT"R-200,0"
LPRINT"P4. "
LPRINT"R-292,-30"
LPRINT"PS. "
LPRINT"J446,0"
LPRINT"R-200,8"
LPRINT"P6. "
LPRINT"R-292,-30"
LPRINT"P2. "
LPRINT"J446,0"
LPRINT"R-208,0"
LPRINT"PS. "
LPRINT"R-292, -3@"
LPRINT"P9. "
LPRINT"J446,0"
LPRINT" R-200,0"
LPRINT"P1@. "
LPRINT"R-315,-30"
LPRINT"P11."
LPRINT"J446,0"
LPRINT"R-200, 0"
LPRINT"P12, "
LPRINT"R-315, -3@"

XXX

YC Mear $56 p 104
20f 3,

VZ200

480 LPRINT"P13,"

490 LPRINT"J446,0"

508 LPRINT"R-200,0"

518 LPRINT"P14,"

528 LPRINT"R-315,-30"

928 SOUND 31,1 -

930 PRINT"(INUERSE) FINISHED":FOR T=1 TO
1580 :NEXT :RUN

1800 *TITLE PAGE

1810 CLS

1830 COLOR 8,8

1835 POKE 308744, 1

1048 PRINT@@, "CTRL+Q,CTRL+T*30, CTRL +W" ;
1845 PRINT@448, "CTRL+E, CTRL+Y%3@, CTRL+R"

’

1860 FOR Y=32 TO 416 STEP 32

1870 PRINT@Y, "CTRL+U"

1880 NEXT Y

1890 FOR Y=63 TO 447 STEP 32

2000 PRINT@Y,"CTRL+I"

2010 NEXT Y

2040 PRINTR1@9, "UZ2-200"

2050 PRINTR13S5, "XXXx CASSETTE - INLAYS XX
&

2060 PRINT@298, “BY IAN DUTFIELD"

2070 PRINT@388, "PRESS ANY KEY TO CONTINU
£

2080 IF INKEY$="" THEN GOTO 3000

2030 IF INKEY$="" THEN GOTO 3000

2035 SOUND 31,1:GOTO 4000

3000 SOUND 28,1

3010 PRINT@388, " (INUERSE)PRESS ANY KEY T
O CONTINUE™

3020 SOUND 10,1

3030 GOTO 2870

4000 CLS

4005 POKE 30744,0

4810 INPUT" (INUERSEISET UP PRINTER AND P
RESS <RET>";P$

4020 PRINT:PRINT:PRINT"PRINTING"

4030 RETURN

Plof

Consider the

BASICs____

Tear yourself away from the darkroom

and plug-in to Kim Kohen’s use of home
computers with photography. This combination
is only as limited as your imagination.

t seems just about everything we do
these days is somehow influenced by a
computer. Evidence of this comes in the
fact that most of the cameras and lenses
we see on sale now, have either been
designed by or have as an integral part,
something resembling a microprocessor.
This has enabled designers to create far
more accurate and ‘foolproof’ cameras.
My involvement with computers is not so
complex. | had tinkered with home com-
puters for around 18 months before | start-
ed realising their potential for the
photographer. | decided that because a great
deal of photography is taken up with time in
the darkroom, thenthis was the first area that
| should explore. It occurred to me that most
photo timers these days are electronic rather
than mechanical, so | figured that this would
be the first task | would make my computer
perform.
| am not a computer expert and | do not
have mega-buck super powerful computers.
| use probably the cheapest computer on the
market, a Dick Smith VZ 300, which at the
time of writing was retailing for $99.00. When
you consider the cost of the Seiko watch
you’re probably using as a timer now, the
computer would have to be considered great
value. i
Most home computers use the computer
language called BASIC. To get the computer
to do exactly what you want, it is necessary
to have a program written in this language.
There are numerous books available on
BASIC and with a little patience it is a fairly
straightforward language to understand.

Computer Timing

OK, back to the timers. For quite a while
| had been processing films at home using
my digital wristwatch as the only form of
timer. This is OK in black and white where
there are only a couple of steps to time. The
problem was that an ever increasing amount
of my work was being done on colour trans-
parencies. With the number of steps and the
precision required for E6 films, processing

54

them can be quite a handful. This is where
the computer comes in.

The thing that computers do best is count.
This meant that it was just a matter of get-
ting the computer to time the necessary
processing steps for me by making it count.
If this sounds difficult, just have a look at a
BASIC manual to see how easy it really is.
The technique needed is called a ‘nested
loop’. In a nested loop, the computer is told
to count to a certain number, but also to wait
a certain time before going to the next num-
ber. Confused? Don’t worry. Have a look at
Table 1 and you should get a better idea of
how it works.

Now for my E6 program | had a few

This computer plugs into most television sets.
Itis amazing just how valuable it can be to the
photographer, from timing film processing to
designing filing sytems.

This is a typical plug-in type memory expan-
sion unit. It gives the user an extra 16K of Ran-
dom Access Memory. Most of the author’s
photography programs require 3K of RAM to
run.

definite requirements. | wanted an audible
warning as | was approaching a chemistry
change, and | wanted a 15 sec. allowance
in which to change chemistry. As well as that
| wanted a time display so that at any stage
during processing | could see at a glance
how much time was remaining. It took quite
a bit of time but | finally worked out the right
program-to perform all of these functions.

It would take too much space to reprint the.
entire program here. Although it is fairly sim-
ple, it does take up quite a bit of room. In
the six months | have been using the pro-
gram, | have processed over 100 rolls of film
with a 100% success rate. (That's better
than most labs).

Of course the timer principle has many ap-
plications. | have just finished a program that:
times Cibachrome processing and automat-
ically adjusts it's timing according to what
temperature the user inputs.

Outside the Darkroom ,

There are obviously many other applica-
tions for home computers in photography.
They don’t all have to be in the darkroom -

Ioi 2.

either. One really simple program | have writ-
ten works out the correct aperture to use
when using extension tubes for close-ups.
Another one lets you work out the hyperfo-
cal length of your various lenses. (Table 2).
This in itself is no big deal, but once you
know the hyperfocal length of your lens, you
can then calculate accurate depth of field ta-

R

Vel

The liquid crystal ‘computer’ display of the
Minolta 7000. These displays will become
even more popular in the future.

AUSTRALIAN PHOTOGRAPHY, May 1986

el A

bles, and even optimum focusing distances
for greatest depth of field. Naturally, you
would work this out on your computer too.

So now I've conviced you that without a
computer your life’'s ambition of great pho-
tography will not be achieved. Before you
rush out and spend a small fortune on the
latest whiz-bang computer, there are a few
things you should know. The most important
thing to do before you buy, is to decide ex-
actly what you want the computer to do. This
will allow you to determine the type of com-
puter, and the amount of memory you are

likely to need. Most of the photography pro-
grams | use require only about 3K of RAM
to run. RAM or ‘random access memory’, is
the memory used to store the users pro-
grams. The type of programs you run will de-
pend on the amount of RAM you have
available. The more complex the program,
the more RAM it requires. ROM or ‘read only
memory, is the computers inbuilt memory.
The ROM cannot be programmed by the
user. The BASIC language is part of the
ROM.

If you are only going to use the computer
for simple timing tasks then a computer with
16K of RAM will be quite adequate.
However, if you want to run business-type
programs like word processors or spread-
sheets, then a machine with a larger memory
will be necessary. Something to remember
here is that many computers RAM.can be
doubled by the fitting of plug-in memory ex-
pansion packs or boards. Go to a recognised
computer shop and ask about any particu-
lar computer and its functions.

This article is, of course, only scratching
the surface. Programs can be written for
storing details of where photos were taken,
at what aperture, shutter speed, film types
etc. Computer filing systems can be
designed for instant information on the lo-
cation of your precious slides or negatives.
How about a program for keeping track of
how much money you spend on photogra-
phy each year? You could take it one step
further and work out your tax return on the
computer. Who knows, the computer may
even be a legitimate tax deduction. e

If anyoné is interested in the programs men-
tioned in this article, or if you have written any
programs in BASIC relating to photography

. write to Kim Kohen, 47 Allingham St, Banks-

town 2200. NSW.

21
R/
34
Fz
(s
&)
34
Fg
<0
2
)
19

Adp ENoum
‘___—u_..
45 CLEAR so Qm} stack /o)--s,

19 TM=PEEK(30898)*256+PEEK(30897)-35

. 20 POKE30897,TM-INT(TM/256)*256:POKE30858, INT(TV/256)
30 TM=TM+1 uexT AvoR,
4D POKE3@846,TM-INT(TM/256)*256 : FOKE3D847, INT(TN/256)
50 TM=TM-65536 2 tonveRT TOo siamen pec,
60 FORA=QTO31 _
70 READB:POKETM+A,B
80 NEXT
90 POKE30845,205
100 NEW
119 DATA33,150,0,1,79,0,58,251,104,254,121,192,205,92,52,58,251
120 DATA1@4,254,115,32,249,33,200,0,1,60,0,205,92,52,201

.
:chce fou iINTeRuAT ExiT.

Australian Personal Computer Page 209

7(¢4)

Whin o kQS 7 ch,m_su.dl Ha J(L\leaowd _f(_nnr;mj
—71: ;ﬂ+t-vp)t rovtim it

roukina Sds an MNTERRUAT,
Vebord oub of Rom v o bl ek

789D JE/F Hex, (30845/0’/‘) D«.) i 3 byde ;.}uu,,L eoerk
sekb by W reckine . JF 0 calid by e mdeuph,

Lines 40 awg, 90 ser Lhs i, CAL. (’)’om‘ri\)

VI Pause

VZ Pause is a short routine for the VZ-
200 which enables the computer to be
‘paused’ at any time. A pause can be
initiated by pressing Shift-X. A short
beeb will be produced to confirm that a
pause has begun and pause can be ter-

“minated by pressing Shift-C, and again a

short beeb will confirm this. The routine
uses interrupts, and so will work with
any software that does not disturb these
interrupts. To use, type in the routine,
and then CSAVE it immediately, as the
program self-destructs when run. When
the program is run, the pause facility
becomes operational.

The program works in the following
fashion:
@ Lines 10-20 lower the RAMTOP to
create space for a short machine
language program
@ Lines 30-40 set the address for the
interrupt exit
@ Lines 50-80 POKE the machine
language program into the memory
@ Line S0 makes the interrupt
operational
@ Line 100 clears the Basic routine from
memory. This is necessary to prevent the
system crashing should the routine be
RUN twice.

[—C‘D Lsn m_s.sj

73812 Hux (30337/; :D,_,_) vortoin W 4584 mB ob Jop of ey pointe.

{9 re u-u. ;1 ‘”s& oW Qdo"\}i Q‘ J'L. k(,:j Lonvr} Mn')"'.ﬁ.(p WLU" [
bt ¥ 4 3 2 !]
% 2 C kb ¥ B

LD HL,SRgf H

- P,l-dn Cov Sound ,
- dvfwho.-, Cnv- Sound .

rvuen b ok shit XD depnsd . —> eak wo Tqshhix>

+ sy LD BC,OBR4¢ H load B¢ Wth 70D

B & D A, (66FBH) - chuk row oddus of keghound mabiin

79 CcP 73}’1 R aith LX) . 1200 — st C)ass,
ReET Nz :

3 3% CAke 345CH =

F8 & LlooP LD A, ((?FBu) P

73 CP 73 H -

Fq IR NZ, toop <

Cs 2» LD HL,SxC8 H, :

3C oy L1 B, RR3CH

SC 34 CALe 345CH call Seund Poukiaw |
RET

/

Iu‘)w‘.‘ ; ')nx(.vu/)l‘ e;(;L ond Rom fnvA-:Ng_

COMPUTING TODAY

VZ SOFTWARE
MODIFICATION

Fast Graphics on a VZ200/3007 It can be done! Here is the

good ail!

1 BOUGHT ‘A’ VZ200 soon after they were
released as an ‘upgrade’ from my old 6800-
based CHIP-8 machine. But it soon became
obvious something was missing. It seemed I
could get speed or high resolution, but not

both. I wanted something that was fast and .

took full advantage of the 128 x 64 dot co-
lour graphics; so, ‘VZChip-8’ was born. -
VZChip-8 is a ‘low-memory’ interpreter
(about 1.5K all " up), designed. for
VZ200%300s with only 8K of memory. Fig-
ure 1 shows a memory map of a typical VZ
computersrunning my Chip-8 ‘system’. No-
tice thé presence of an editor. This is used
to write your Chip-8 program and can also
be used to write machine code programs. It
is a separate program in its own right — a
stand-alone component in the CHIP-8 sys-
tem, so I have decided to discuss it first.

The Chip-8/machine code
editor

This program is about 1K long and allows
you 'to work entirely independently of
BASIC. In fact, it allows you to talk directly
to the central processor. Programs are writ-
ten in hexadecimal — or base 16, and con-

- sist of a string of op-codes and arguments. If

you don’t understand you should get hold of
a book on machine code programming for
the Z80.)

The basic requirements of an editor are
that it be able to write, run and modify pro-
grams, print listings and save to tape or
disk. I have included a few extras because I
find them helpful, but otherwise, the editor
consists only of these things.

Editor commands consist of a single let-
ter. Its features revolve around the memory

1023'.

Chris Griffin

pointer. This is just like an arrow, pointing

to a particular place in the VZ’s memory.

The editor uses the arrow to indicate where

it is to store or retrieve the information it

needs. For example, if you want to list a

program beginning at memory location

8260, you first set the memory pointer to

8260, then instruct the editor to list. How do

you do all of these things? Easy; using the

following commands:

A prints out the ASCII value of the next
character typed.

B returns to BASIC; this is used for saving

" -to disk and loading from tape or disk.

D converts a hexadecimal number to its
decimal equivalent.

G is used to run machine code program.

H help, prints out a message to remind you
of something.

L lists memory to the screen, beginning at
the memory pointer.

M sets the memory pointer to a particular
place.

O outputs (saves) a program to tape; pro-
duces B p which run automati-
cally when you CLOAD them.)

P puts data to memory, beginning at the
memory pointer position. This com-
mand is used for writing and modifying
programs.

S searches for a particular byte (or two),
and points the memory pointer to the
place where a match occurs.

Ttype; the same as list, except to the
printer.

V vector; places the pointer at the memory
location which is stored at the present
pointer position.

X eXtension; allows for user defined com-
mands, and others; an extension is used
to activate Chip-8 programs.

Command extensions: X
Commands beginning with X are two
characters long: the second character is a

— 8F30
EDITOR

— BAFD
CHIP8
PROGRAMMING AREA
CHIP-8 PROGRAM START

OGRAM ST. _

CHIP-8 DATAPROGRAM
AREA

— 8000
CHIP-8 INTERPRETER

— 7AE9

Figure 1. Memory map of an aperationd

VlC?be programming aenvironment.
8000 ?7°M

ADDRESS = 3458

3450 771

ADDRESS = 8678

8678 ??7S

UALUE = 2627

FINISH =

QCES ??L

@CES = S6 772 7A 23 U0 20 F9 78
@CED = D6 @8 FE CQ 20 E6 C3 7
@CFS = 87 85 21 1C 73 CD 97 @D
@CFD = B? F2 F6 @C 78 B? 28 09
@08S = 21 24 79 86 7> D2 78 87
@DeD = C8 3A IC 79 B2 FC 20 @0
@DIS = 21 25 79 7E E6 80 2B 2B
@DID = AE 27 C3 21 1D 79 86 @7
@CES ?7n

ADDRESS = 0097000

7000 ?7P :
7000 = 48 45 4C 4C 4F 20 29 20
7008 =

7000 27X

EXTENSION #D

Figure 2. Some of the editor commands in
o_peraﬂon.

number (between 0 and F). Some X com-

mands are already defined:

XO prints out a message beginning at the
memory pointer position; (all messages
use the byte 00 to signify the end).

XD directs all output to the video screen.

XE directs all output to the printer; for in-
stance, Figure 2 was generated in this
fashion. _

XC We shall use the XC command to acti-
vate the Chip-8 interpreter but since it
hasn’t yet been installed XO just clears
the screen. The process of adding your
own X commands will become obvious

‘when we discuss connection of the Chip-

8 interpreter.

LISTING 1. USING THE EDITOR. .

CHIP-8 INTERPRETOR PART 1
EDITOR PROGRAM

DON’T BREAK THIS PROGRAM ONCEIT
BEGINS RUNNING. ..

CLS:PRINT@200, "PLEASE WAIT2E"

A B WN =&

1@ GOSUBS@:1FA$="XX"THENGOSUBSO :0=X :GOSL"

B850 :0=Dx256+X:G0T010

1S IFAs$="22"THENPOKE 30863, 112 :POKE30862,
0:G07070

20 POKED, X:T=T+X:D=D+1:G0T01@ .- -

S@ READAS :JFA$="XX"ORA$="22" THENRE TURN
S1 X=HSC(LEFTQ(H$.lJJ-4B=B-ﬁSC(ﬁiGHT$(ﬂ$
»131-48

6@ x= (X*(X)SJ*?)!IS*(B*(B)SJ*?J

65 RETURN

7@ 1FT=118389,PRINTUSR(1)

7S CLS:PRINT"AN ERROR HAS BEEN MADE, CHE
CK "

80 PRINT"THE LISTING CAREFULLY"

99 'MAIN PROGRAM LISTING

100 DATAXX, 70,00,01,30,04,21,00,72,11,F0
,8A,ED,B80,C3,FD,8A

118 DATAXX,?2,00,C3,ES, 88, 7C,CD,0S,88,70
»FS,1F,1F, 1F, 1F,CD,QE, 8B

120 DATAF1,E6,9F,C6, 30,FE, 3A,38,02,C6,07
»18,18,E5,CS,CD

130 DATAF4, 2E,B72,20,FA,CD,F4,2E,B2,28,FA
»@E,30,10,FE, Q0

14@ DATA20,FB,C1,E!1,C9,ES,CS,C0,E4,8E,36
,20,C0,2A,03,2A

15@ DATA20,78,36,AF,C1,E1,C9,ES,CS,FS,CD
»5@,34,F1,18,E7

168 DATAES,CS,CD,1A,8B,47,FE, @D, 28,08, FE
»30@,38,F4,FE,3A

170 DATA30, 10,E6,0F,21,3E,80,FS5, 78,C0, 44
,88,F1,FE,80,Cl

ig8@ CATAEL,C9,FE,41,38,0C,FE,47,30,08,06
»072,18,E4,1A,B7

190 nAaTACS,CD,32,88,13,18,F2,CD,00,8B, 11
»AQ,B8,C0,78,88

200 DATAQS, @8, 3k, 20, CD, 32, 88, 7€, 23,CD, 85
,88,10,F4,3E,0D

210 DATACS, 32, 88, 20, 30, 9e, CD, ’8, 88, 3E, 20
,CD,32,88,21,00

220 DATAO@, 06,00, CD, 4D, 88, (8, 29, 29, 29,29
»85,6F,04,18,F3

230 DATA2%,ES,7A,22,F9,78,21,07,8F,22,8E
,78,20,C0,F6,8E

24@ DATAAF,32,9C,78,3E,11,32,38,78,32,00
,68, 3€,03,32,39

250 DATAZ8,21,00,80,22,10,78,C9,F3,31,FF
»BF,CD,B0,88,11

268 DATADO, 80, CD, 78, 88, 2A, 19, 78, CD, 20, 88
»11,20,8C,C0, 28

270 DATA8B,CD,1A,8B8,FE,41,38,F9,FE, 5B, 30
+FS,42,C0,44,88

280 DATA3E,80,CD,32,88,21,31,8C,7E,FE,FF
128,08,23,88,28

290 DATAO4,23,23,18,F3,5€E,23,56,05,E1,CD
,»2C,8C,18,C6,ES

3@0@ DATAZ2, 3F, 3F, @0, 4C, 59, 8C, 40,65,8C, 4?7

' 4 8F, 8C, 53,79, 8C

3108 DATASE,BD, 8C,56,27,80,41,32,80,44, 53
,80,4F,64,80,48
320 DATA46,8E,42,4C, 8E, 54,57, 8E,58,98, 8E
»FF,2A,10,78,0E
330 DATA@8,CD, 84, 88,00, 20,FA,C9, 11,04, 8E
»C0,A3,88B,22,10
340 'DATA?8,C9, 11, BE, 8E,CD, A3, 88, 78,B7,C8
»E9,11,16,8E,CD
35@ DATAAZ, 8B, ”8,87,C8,FE,083,FS5,30,01,65
4ES,i1,1E,8E,CD
369 DATAAZ,88,ED, 38, .9, 78,13,78,B87,20,03
12A,10,78,Cl, 1A
3792 DATAL3,B8,20,0F,F1,38,06, FS lHyBS 20
,@2,F1,18B,ED0,S3
380 OATAlG,78,C9,0F,20,E9,11,22, 8E C3 7B
,85 00,009,900, 00

39@ DATA2A, 1@, 8,06,00,CC,00, 86,.1, 10,80
,CD, 78,88, 3E,08

40@ DATAFS, 3E,20,C0,32,68,C8, 78,20, 20,20
» 1A, 8B,FE, 22,28

410 DATAID,@0,00,C0, 18,80,28, 14,87,8°,87 .
»875FS,CD, 40,88

420 DATADI,28,09,82,77,23,F1,30,20,06,18

" 2272,F1,7€9,CB,F8

430 DATA3E,41,CD,FF,8t,18,CF,C0,1A,88,F¢t
»22,20,06,CB,B8
440 DATA3E,AF,18,EE,FS,CD,44,86,Fi,18,09

' JES,CS,C3,52,88

45@ DATA20, 30, @, 3e,0ec,.0,32,B8,18,98,2A
,18,78, 7E,23,66

460 DATAGF,22,10,78,C9,11,32,8¢,C0, 78,38
,CDy 1A, BB,FS,CD .

470 DATA44,88, 3E,00,CC,32,88, 11,16,8L,CD
,78,88,F1,C0,85

480 DATASB, 3€,00,C3,32,88,11,48,8E,CD,A3
,88B,11,16,8E,CD

490 DATAZB,8B,CD,AF,8F , i8,EA, 1],39,8E,£D
,78,88,21,90,7A

S@0 DATABG,10,C0, 1A, 88, FS5,C0,44,88,F1,FE
,081,C8,FE, @D, 28

Sie DATAG4,77,23,1@,ED,36,48,3¢,11,98,32
,06,7A,11,8E,8E

S20. DATACD,A3,8B,ES,11,1E,8E,C0,A3,8B,F3
,@E,F1,CD,SB, 35

3@ DATADI,CD,A3,80,F3,C9,08,01,9A,01,4B
,79,8@,28,F8,00

S4@ DATA21,23,78,78,C0, 11,35,00,77,00, AF
,00,72,01,7A,C0

sse DATAD?, 80, 70,CD,D?,80,7C,CD,07,80,CD
,E8,3A,08,1A,13

S6@ DATACO,D?,80,0F,28,F4,ES,C3,FA, 34,C0
,11,35,C3,8€,38

S70 DATAIF,S6,SA, 20,32,30@, 38,20, 48,45, 58
1 28,495,44,49,54

580 DATA4F,S2,00,56,45,52,20,32,2E,31,00
,28,43,29,20,43

S99 DATA47,27,38,35,00,00,00,41, 44,44,52
,45,53,53,20,30 - -

6@8 DATABY,53,54,41,52,54,28,30, @@, 56541
,4C, 55,45, 2@, 30

619 DATAQW, 46,49, 4E, 49, 53, 48, 20, 30, 80, 4E
,4F ; 54,20, 46, 4F

- 620 DATASS, 4E,44,00,00,43,48,41,52,20,30

,00,4€,41,40,45

630 DATA20, 30,00, 48, 45,58, 20,30, 80,11, 64
,8€,C3,78,88,FB

640 DATACD, 7A, 1E,€D,78,E8,78,C3, 19, 1A, 21
,9C,78,36,01,ES

65@ DATACD,S9,8C,E1,36,08,C9,43, 4F, 40,40
»41,4E,44,53,20

660 DATA41,52,45,00,41,2C,42,2C, 44, 2C, 47
,2C,48,2C,4C, 2C

680 DATA4D, 2C, 4F, 2C, 5@, 2C, 53, 2C, 54, 2C, S6
,2C,58,00,00,4S a

690 DATASS8, S4, 4S5, 4E, S3, 49, 4F, 4E, 20, 23,00
,11,8C,86,CD,78

700 DATABB,CD, 40,88,C8,87,C6, AF, BF , 26, 8E
,F1,CD,4E,80,C3 2 '

710 DATA22,8C,DA,8E.E4,88,£4,88, E4,8B,E4
»8B,E4,8B,E4,88

720 DATAE4,88,E4,88,€E4,88,E4,88,E4,88B,C9
,@1,0s,8E,CF,8E

730 OATAE4, 88, 3E,01, 32, 9C, 78, (3, AF, 32, 9C
,78,C9,ED,58, 18

740 0ATAZ8,CD, 7B, 8B,Q3, 4E, 80, 2A, 20, 78,47
,3A,9C, 78,87,78)

750 DATACS,FE,8@,08,C6,20,E6,F, £9,21,FC
,8A,22,B1,78,20

760 DATA18,12,32,40,88,3E,01,C3,44,88,F3
»31,FF,8F,CD,CD

NOTE: We have had complaints from read-
ers who could not get the editor listed last
month running. Printed below are correc-
tions to lines 70 and 380, and two new
lines 770, 780 to be added. As well as this,
we understand that in some issues of the
magazine, the figure 32 between 90 and D6
in line 510 was printed so indistinctly as to
look like 37. So if you have any problems
after amending the listing, check line 510.

CORRECTIONS TO THE ‘EDITOR’
LISTING.

THE FOLLOWING ARE THE CORRECTED
LINES.

70 IFT = 118550, PRINTUSR (1)

380 DATA10,78,C9,DF,20.E9,F1,11,
27,8€,C3,78,88,00,00,00

770 DATA8B,C3,Ec,88B,2D,22,A0,78,

C9,00,00,00
780DATAZX

NB. THE LAST TWO LINES NEED TO
BE ADDED TO THE PROGRAM. []

ET! October 1986 — 33

5,
3 6F 3

COMPUTING TODAY

Using the editor

Key in the listing given (Listing 1), save a
copy of it, then run the program. You will
have to wait a while, until everything is set
up. If an error results, check the listing care-
fully. An introductory message will be
printed when the editor is installed. Save a
copy in this form to tape or disk. To do this

tape users should type: OVZEDITOR (cr)
8AFD (cr) 8F30 (cr), where (cr) means the

RETURN key. The last (cr) is not typed until
the tape recorder is on and in record mode.

Alternatively, type BBSAVE
VZEDITOR" ,8AFD,8F30(‘cr’). Both Bs are
essential. The first is needed to exit the edi-
tor. This step eliminates the delay from oc-
curring every time the editor program is
run. It saves the machine code part, pro-
duced by Listing 1, to the relevant medium.

Commands

Now, try out some commands: particu-
larly M,LH and T (if you have a printer). It
is a good idea not to use the G or K com-
mands just yet.

You will find that many commands
prompt for ADDRESSes, START locations,
STOP locations, etc. The answer accepted
by the computer consists of the last four
digits of whatever is typed in. If you meant
to type 88D8, and instead, entered 8BE,
just type in the right response and the prob-
lem is fixed, so that 8BE88D8 is interpreted
as 88D8. This is important because the edi-

tor is not equipped with a backspace facility.

The P command, as I said before, allows
you to put data in memory. To test it out,
set the memory pointer to 7080 (use M7080
(cr)) and type P, Now, type in the following
data: 48454C4C4AF (cr). Notice that the
word HELLO appears on the screen as you
type. You have stored the ASCII values for
HELLO at location 7080-7084, which is in
screen memory.

How did I know to use 4845 ...? I
looked it up; but that’s a laborious task if
you want to enter lots of words into memo-
ry. Instead, you can use an easier form: type
M70CO0 (cr) P”, the “ (shift 2) allows for
character data entry — the computer does
all of the conversions for you! (Notice that
while in this mode, the normally blue cursor
tumns into an ‘A’.) After typing in the re-
quired word, pressing another “ returas the
cursor to blue again, so you can enter hexa-
decimal data as usual.

S is used to search for one or two bytes,
depending on what you type in, from the
memory pointer to the end position (which
you also type in). If a two-byte search is re-
quired, make sure the search string is more
than two digits long. For example, to search
for 6A00 in the region of memory 8200 to
8500, type M8200 (cr) S6A00 (cr) 8500 (cr).
The message NOT FOUND means that 6A00
could not be found anywhere between loca-
tions 8200 and 8500. [)

IMPORTANT EDITOR MEMORY LOCATIONS

number of keys pressed.

The editor has a small collection of useful subroutines. These can be used when prototyping a Chip-8
program or when writing machine code programs. Care should be taken to ensure that calls to these
subroutines are not present in the final program, unless the editor is to be included in the final program.

Location Description isters altered
8AFD Jump location, COLD START. L,BC,DE,AF
8800 Show HL register pair as a hexadecimal value. AF
8805 Show A register as a hexadecimal value. AF
8B1A Wait for a key press, A contains the ASCII value of the key that AF
was pressed.
8832 Show the charwter stored in A. none
8844 Show character in A, and beep. none
884D Gat a hexadecimal key (0-F, or (cr)) and put the value in A, A AF
equals 80 if (cr) is pressed.
8878 Show a string using DE as the pointer, up to the character stored DE,AF
as 00.
8BA3 Shows a message off DE, and gets a two-tyte number from the HLB,DEAF

keyboard; the number is stored in HL, while B contains the

The following locations contain prompt messages used by the editor. Each message consists of
a string of ASCIl characters ending with the byte 00. These messages can be changed to suit your

own personal requirements.
Locstion Lmqth Description
800D Introductory message; this is the heading displayed when the'editor first
begins.
8E64 39 Help message; the 39 characters here are reserved for a simple memo which
is called up by pressing H.
8C2D 3 Prompt string, normally consists of a space and two question masks.

Example: to change the help message,

Make sure that whatever you type
Next month: the CHIP-8 interpreter.

type:
MBE64 (cr) P“this is the new message (cr) “00 (cr)
as the message Is less than the maximum size of 39 characters.

.mm \ &w 3@ N.L\:m. d+d\&.w vy

L3 s 86y 17 22 wwdq sgl
vy w8 Oo ‘b

23’y g iy ollL
'02¢02¢38°44° 1€
£3'B8‘bH‘EI10°IEB8 'OV ‘ZEZI ‘BIVYIYD B9C
0z8¢‘18°2Z ‘Y8
24°1262°3¢93'92°92°80°@8°34°8IY1Y0 3SC
8¢¢8'8¢'J6 ‘YE "
CHBCOZYZ 08 I €DB8 ‘B¢ 0D BCYIYD Bb(C
@l‘gs‘a3‘ea‘sc "
J6°ZE IV EI 8L IEZE 18 IE 88 pIVLIYD BEC
38¢34738'cO‘10*
62‘68°‘v3‘88‘+3'88°b3°88'H3°88‘H3VLY0 BZC
g8‘b3‘88‘'v3°88 ¢
p3°g8‘v3‘88°»3‘88‘+3 438190118 1ZZYLYA BI¢
£7°08°3b°0D°14°
IBYZ 4G IVQI (B BIE8Ch ‘0D ‘E8YLIYT 9BC
8¢°02°38°28°11 ¢
oo €Z°'0Z°‘3b b ‘6L ES I mv $G ‘8SYlY0 Q69
Mwo 00 ‘8S ‘Iz
952 $S I €S IZ'BS *IT* 3¥ 2 ‘ObYIYD @89
3Z242b432°8b I
mv.um.rv.um.mv.um.ﬁv.oo.nv.mn.~¢cwco 099
BZES bb Ib b
62‘PP‘9E ‘13I8 65 ‘0IYIV0 BS9
S3‘1@‘9E*‘BC ‘6"
ﬁm.¢~_m~.mu.mm.mu.mm.ow.m_ ¥¢ ‘0J91va 8b9
83'68°8¢‘€3¢38¢

vo.ﬁ_ﬁwo.om BZ‘8S ‘'SP ‘8b |80 ‘0E ‘OZYIY0 BEQ™n
b¥cy iy 1p 3p fpe
gE‘8Z TS Ib Bb mvxoo Q8 ‘bb *3Ib SSYLYD 829
! FT TRl AR TP
uvlao.am.om.m¢.mm.mv.u¢.m¢ ovyaochco e19
Oc ‘ez sk ss b
[y omﬁo@ 0E‘OZ‘vS 2SS Ib bS* mmﬁmo¢hco 09
0E ‘@Z‘ES‘ES‘SH*
000808 ‘SE ‘8E (2 '¢hULYA B6S
Ev‘OZ‘6Z'Ch ‘BT
CoTT32°2EfBZ'ZS 'SP *95°08°2G 4bYIYad @8S
bS‘EYpbSHRZ
8SSv ‘8b ‘02 ‘@E ‘8E ‘Z€ ‘02 '¥S ‘95 ¢ Lutpco 0¢s
hezséoﬁls ~8E'3B'EI‘CE I
02‘bE‘YI‘EI'CI'p3'0Z *30°08¢<00IYIYA 89S
E1°Y1°BO‘YE Q3"
02408°¢0°02°J¢*08¢0*0J40C 08 ‘¢OY1YA BSS
02‘YC I8¢ taa”
YUY 0B CCO0SE 1 °0D°8C ‘8¢ ETT1ZYIYA BYS
4y 0o‘g4‘ez‘es ‘el
B0°‘10°‘Y6*10°80‘6I°C4°081EY ‘0D 10YLYA BES
GE‘8S‘aI‘13%30 "
€4°88°€Y“00°3831°11°G3'88'€EY 0IYLIY0 BZS
38°30°11‘Y¢ ‘90"
ZE‘PE‘I1°3€'0B'9E ‘03 @1 ‘€2 ¢ bOYLYA BIS
8Z‘00‘33‘87'10"
33°0388'bp‘02'S4488 Y1 ‘001 ‘90YLIY0 @BS
yc‘oe‘1zes ‘ect
02¢38°‘6E T1°Y3‘B1°4039°0D‘88°8¢YIY0 B6b
02°38‘gl*I1‘g8"
EV‘0D‘38 ‘@b T11°88°2E €100 ‘3¢ ‘88YLYA @8b
se‘0l‘li‘ss‘ac *
02°38°Q1*11'88'2€°0D'00°3IE‘88 ‘bbYLYA BCYH
02‘s4‘g8'yYi ‘0"
8818003812 ‘1146248 ‘01224 49Y1Ud @9b
g99‘gz‘3¢8ctal’
vz ‘g6 ‘8l ‘g8‘ze‘0l'0l‘3c‘vR ‘AL ‘OZYIYa OSYH
88°CS‘€7°GD ‘63"
60°81°14'88'bH*02°S4°33°81 49 IEYIVYD @b
88‘g8l‘9e ‘ez ‘22"
334'g8°YI0D 30813843300 b ¢3€Ylva BED
83°82°¢62°13%¢2*
81°90‘OZ‘0E‘13°€2¢C ‘286082 10QYLIYA BZY
88°0b‘07°S3‘¢8"
(84¢B'¢8 p18208'81‘00‘0B°‘PR‘ATYivd @1b
82°2Z¢33‘88 ‘Y1 ¢
g2‘0Z‘e7 ‘8¢ ‘8188 ‘ZE‘02‘DZ‘3E‘S3Yiva 0vd
80 ‘3€‘88‘8¢ ‘00"
08‘01 “11°88°00‘0J‘00 ‘90 ‘8¢ ‘A1 ‘YZYLIYd @6E

‘sl ey ‘vr ‘qr’gs

av ‘av ‘I ¢ mv

A 2 AR ~v

v Wi 00‘P0‘00 ‘38"
8¢'€3138' ¢z 1]} mw @z 406284 ‘0TYlY0 @8E

£503‘sl13¢a"

8Z‘'68'Y1 ‘C4‘00" mm 14¢30'0Z*8B‘EIYIY0 OCE
‘ Yl¢13¢8C01 92"
@' ‘8c03‘g8 fEvyiyad B9E
024383111463
S9‘1@‘@E‘S3‘c0*33°8D4¢88¢ ‘88 EYYIYA BSE
03¢38¢91‘I1‘63"
82¢¢8'8¢‘88°€Y*02438430°1167°8¢YLYQ BYE
elr‘zz‘es‘ev Q"
38‘be‘11‘60‘Y3‘02 0088 ‘b8 ‘0D ‘8OVLIYO @EE
30801 Yz 43"

388685 ¢381¢S bS5 ¢38°Ib ‘2 3849bYIYA BZE

go‘eZ¢8‘seel ‘s

8v‘08'v9‘3v ‘08"

£S‘bb*08°ZE 14 08¢¢Z 49540808 O5YLYA BIE
J86£E5‘08¢ 40 ¢
(b428°SQ0P D865 I ‘00 € ¢ IE ‘9ZYIYA POE
639778138432 "
02°13°C0‘9G‘€2*35‘ed 81 ‘€2€2bOYIVD B6Z
8z‘8g‘cz ‘808"
43¢34¢3¢408¢1€41248842€ 402400 “3EVIV0 882
88°‘bb‘02°‘¢h s’
BE‘BS‘3I3‘61°8BE‘ I 33488 Y1 0 ‘88YLIYA BCZ
g8c‘ada8‘az eI
88°00°07°8¢‘01'YZ‘88°8¢ 0708 ‘00Yiva @92
[1‘gg‘08°‘00 ‘48"
43°1€°€4'60°8¢ ‘011220800 1Z‘8¢Y1Y0 BSZ
6E‘ZEERIEBI "
@O‘ZEBCBEZE I1°3€8¢*I6°ZE“IVYYlyd BbL
38‘g4‘00‘0Z ‘8¢
38ZZ48°¢O1Z°8¢64°22'W63°1ZYIYa BEZ
£3°81‘b0°39°G8*
62°62°62'62°82°88°0b ‘070090 ‘0AYLIYAD BZZ

eo‘rez‘gs‘ze ‘ol

@z‘3c‘88‘8¢‘07‘@0 ‘0E ‘AT ‘88 ‘ZE ‘EIYIYA 812
ge‘3c‘vi‘elr‘gs "

GO ‘0D °‘€Z43¢ ‘88 ZE 0D BT IE 80 °90Y1IYA AL
. g8‘8¢‘0D'88 ‘oY
[188°00°00°¢4‘8BI ‘€1 °E8°ZE ‘0D *8IVLIVL 261
¢8'Yl‘b3‘8l¢o*

90°‘80‘OE ‘¢ I°I0°BE 13360 13VIvd @8I
12‘@8°‘34‘13°‘g8 "
bb07°8¢‘S4‘08°43€1Z4 409301 ‘REYLYD B¢
YE*IJ‘bJ8E ‘O¢E *
34°80°8Z°00°34°¢b‘88'YI‘03°SI°G3v1lva 091
¢3'81°14'pE DS
02°63°GD°GI6I°13°1D°4Y‘9€E ‘B¢ ‘OZYIYa BSI
YZ‘ce‘vyz‘al‘ez"
9E‘38b3°0D°CI°CI6I¢1310°84°0ZYLYa Bb |
go°‘33‘0l‘ec ‘30"
Y3‘82°¢¢8°3Zb4'00'Y4°02¢83Z b3vlva OcEl
g2°‘sd‘s3‘glssl
¢0°'92°ZP‘8E‘YE“II‘PEQI* 3093 14vlva BZ I
8843002 414141431 °G4"
0¢‘88°CR*02°¢2¢‘88°S3°CI[@R 2 ‘XXYLlYa Bl
| ¥s‘04‘€a‘e8‘a3‘ve’
0311200 1Z PO OE 1000 ‘O¢ ‘XXY1Ya 80l
ONILSI WY¥903d NIY(66

wA7INI38YD ONILSIT 3HL.INI¥D @8

e

“30ul N338 SYH ¥0d¥3 NY.INI¥d:STD S¢
(1)JSNINI¥d ‘eBEBT I=13] B¢

°55 N¥NL3Y s9
(£¥(6<8)+8)+9T¥(CX(6(XI+X)=X B9
8b-C(1°
$Y)$LHOT¥)ISY=8:8b-((1 ‘$U)$14371)ISYeX (S
NANLIANIHL .22, =8980, XX =89 3] $YOY3S @S
@T10L09: 1+0=0: X+1=1:X‘03N0Od @2

©C0109: 0

2980EIN0J: 211 ‘€98REIN0INIHL 422 =8U3] Sl
@10109: X+9SZ¥0=0: 858

NS09: X=0: @SBMNSOINIHL w XX . =$Y 3] t 0SBNSOD 0|
Z58LIUM 3SY3d. ‘OBZBINIYJ: STD

3HD

¢
***ONINNNY SN1938
L13JNO WU¥903d SIHL XY3y8 1(¢NOQ «
HUJO0dd ¥01103
[l3Yd 3013¥dY3INI 8-dIHI

“[oe 0} pUBWWOS DX Y

-diyH o3 Jo uoNOIITVULO § |
$NOIAQO 3WO033q [[A SpL
mo£ Zurppe Jo ssxo01d ¢

sreap Isnf'OX pa[reisul
3 9ouls Ing 19321didyut |

|
SIq} Ul pojeIdudd sem ¢
-ut 30} ‘19juud 2y} 03 In
'U9108 OIPIA Y} 0} N
‘(pwe oYy Ayrudis o) |
sofessow [[e) ‘uonisod 3
oy 18 SuruuiSaq a3essar,
paugap

-wod X wos (4 pue (

Uj SPUBLILICO JOYPa 8y

¢® 98 6¢ Al 1Z 62
gz 92 @8 93 3¢ 6
ge 8z 234 ¢8 6¢ Il
¢@ 8¢ ZQO ¢< 98 6¢
60 8Z ¢8 8¢ 20 94
e ¢6 02 6¢ J1 12
8 €3 93 82 02 34
8¢ 64 82 Q0 €2 Y¢

7}
i WwewuaAue Bu;
[euogeiado e Jo de
_

63vL—
CETENE

0008 —
ar WYYDOUdN
01 luvis wvu
v3uv BN

advs —

CHIP-8 INTERPRETER °

A CHIP-8
INTERPRETER

— for VZ200/300

Chris Griffin

How’s it going? Did you get the editor from the last article in
August '86, typed in, up, and running? If you had any trouble
refer to the note at the end of the article. In this article | use
-the editor to set up the Chip-8 interpreter, to write and run
Chip-8 programs. | will also mention details of this particular
dialect and show a few simple programs to get you started.

THE CHIP-8 interpreter (Listing 1) is a
machine language program which executes
instructions beginning at location 82())
(this is in hex — remember!). The inter-
preter has an ‘address space of 4K, mean-
ing that it can only access 4096 bytes of
memory. Therefore only three hex digits
are required to specify an address. 8200 is

28 — ETI October 1986

referred to as 200 by the Chip-8 interpret-
er, 54A refers to 854A, etc. So, if from
time to time, | drop the leading &, don't
be too bothered about it!

Each Chip-8 instruction consists of two
bytes of hexadecimal data — a total of
four digits. Between 200 and AFC, the
locations in which a program may be

i’gc_s— :

stored, there is thus room for about 1150
instructions. You can also use locations
(8)000 to (8)1FF to store parts of the pro-
gram,-but never forget that execution is
from location 200, so you’ll have to use
this section of memory for subroutines or
shape data.

- Chip-8 is a ‘what you write is what you

get’ sort of language in that there is no
way to break out of a program that is run-
ning, unless you have allowed for this pos-
sibility. This is one aspect that could take
a little getting used to, but don’t worry,
you will! The Chip-8 interpreter has in this
regard a trade off. A little speed is gained
in the sacrifice; and for me, the speed is
worth it!

The language of Chip-8 supports only 16
variables, an index register, and a stack
pointer (which is rarely used in programs
— it is more useful to the interpreter it-
self!).

The variables, labelled by a ‘V', fol-
lowed by a number (0,1,2...D,E or F), are
each one byte long. They can only be used
to store numbers in the range 0 to 255, so
all operations involving variables are lim-
ited in this way. If any extra space is re-
quired to store the answer to a calcula-
tion, VF is used for the extra piece. (It is
called the carry, and is only relevant to a
few arithmetic commands. Larger number
manipulation is available to a limited de-
gree, using the index register called ‘I'.
This is a 12-bit number (3 hex digits) and
is used to point to memory locations in
much the same way that the editor pro-
gram has a memory pointer. When you
store 6B0) in the index register, it points to
location 86B0, as might be expected! The
index register is an important part of the
system as it is used extensively in graphics
manipulation; it also allows more than 16
variables to be used by a single program,
if desired.

OK, now let’s get things up and run-
ning!

Getting started
Load your copy of the editor program
(ETI August 86 issue), and run it. Then,
type in Listing | beginning at location
TAE9 (type M7AE9 (cr) P then the data
shown in the listing). Check the things
typed, to make sure they are correct and
type in the following:

(i) M9BDF (cr) P0082 (cr)
This sets the memory pointer to 8200
whenever the editor is run.

(i) MBEC7 (cr) PE97A (cr)
This connects the Chip-8 interpreter to the
editor, allowing it to be activated l?y press-
ing XC. 8EC7 is the location which con-
tains the start address for th€ routine
which we want activated by XC — and we
store 7AE9, the interpreter start address,
here. By the way, locations 8EBF to

8ECD contain the start addresses for all of
the X commands (XC through XF), so it’s
easy to add your own!

(iii) M8200 (cr) PFO0O (cr)

A very short Chip-8 program, just to test
things out.

Now, save everything. Use OVZCHIP8
(cr) 7AE9 (cr) 8F30 (cr) if you have a tape
system, or use BBSAVE “VZCHIPS", 7AE9,
8F30 (cr) if disks are your forte (after sav-
ing to disk, you can restart the editor with
?USR(0)).

Let’s run the Chip-8 program entered in
(iii) above, by pressing XC. The screen
should have flashed, and the editor re-
started. If it has, so far so good. If not,
check that the interpreter you typed in is
the same as mine! Tape users will prob-
ably have to start all over again!! (This is
because B: programs run automatically
from tape, but not from disk.) When
everything works thus far, read on...

Chip-8 graphics

Graphics takes place on the VZ's mode 1
scréen. The individual points are labelled
with two coordinates in exactly the same
manner as BASIC (except, everything is
in hex). Chip-8 allows you to display
points (like BASIC), entire shapes (of up
to 8 x 16 dots) and line drawings in 256
sizes (although there are some restric-
tions!) in any combination of colours you
care to imagine. (Of course, only four co-
lours can be used at once in this mode —
there is little that can be done about this.)
An object can be positioned anywhere on
the screen, even overlapping another ob-
ject. Overlapping objects are stored on
the screen in exclusive-or form. Table 1
shows the consequences of this in colour
mode 0 (COLOR, 0), which is read as: ‘if a
red object is placed on a blue area of the
screen, the overlap is displayed in yellow’
etc. Funny idea? Not really! These condi-
tions allow you to remove objects by sim-
ply re-displaying them. If we number the
colours 0 for green, 1 for yellow, 2 for
blue, 3 for red, and change to COLOR, 1
mode the same sort of ideas apply to buff,
cyan, magenta and orange.

A collision occurs if the following pairs
of colours overlap: 1&1, 2&2, 3&3, 3&1,
3&2. Collisions are registered through an
object called ‘HIT'. HIT cquals 1 means
that there has been a collision, HIT equals
0, otherwise. After a graphics command
has been executed, HIT is stored in VF
(variable F), to allow you to check for col-
lision with Chip-8 instructions.

Shape drawing ,

A ‘SHAPE’ is eight dots wide, and be-
tween. 1 and 16 dots long, and is consid-
ered as residing in a grid (sec Figure 1 for

TABLE 1. COLOUR OVERLAP

Overlap-| Green VYellow Blue Red
ping
colours .
Green | Green Yellow Blue Red
Yellow | Yellow Green Red Blue
Blue Blue Red Green Yellow
Red Red Blue Yellow Green

an example 8 x 9 shape in its grid). Each
row of the shape is represented by two
bytes of data, that is, four dots to each
byte. The colour of each dot can be inde-
pendently defined using the number of the
colour that is required.

For the first row of the shape down, we
have two green dots (which are in essence
invisible) five blue dots, and one green
dot. The colour codes are 0,0,2,2,2,2,2,0.
Group this information into clusters of
two digits: 00 22 22 20, then for each clus-
ter, multiply the first digit by 4 and add
the second to it, giving 0 A A 8 in our ex-
ample. The two bytes used to describe this
row are thus OA and A8. Every other row
is complete in exactly the same manner
and the data stored in a segment of
memory.

B B B B B
B Y B Y B
B B B B B
R
R R R
R R R R R
R
R R
R R

Figure 1. Example of a nine row shape (a
robot figure). Each square is filled with the
colour that is desired. Those with no colour are
green by default, as this behaves invisibly.

Y — yeliow colour value is 1

B — blue colour value is 2

R — red colour value is 3

The last row, for example, is 00300030, which
is 0COC in hex.

To put this shape up onto the screen,
we set the index register | to point to the
first byte of the shape data, and use a
SHOW command. From the table of
Chip-8 commands (Table 2), it is obvious
that the SHOW command is Dxyn, but
what does that mean? An example should
make this clearer: D456 will show a
shape, six rows long, with the top left

29C s,

hand corner at (V4,VS5). If we want to dis-
play the example shape at (V3,V4), then
use the command D349 — the 9 means
that our shape is nine rows long.

Let’s write up a real Chip-8 program
now.

Writing Chip-8 programs

To write a Chip-8 program, simply put the
instructions, one after another, in memory
from location 200 onwards. Consider the
short program ‘that we typed in earlier;

“pressing XC did nothing much, so what

was the Chip-8 program? Well, it con-
sisted of the single instruction F000, which
from Table 2, ‘jumps back to the editor,
or restarts the program if the editor is not
found’ — in other words: END! So, that’s
why nothing much happened! For a real
program, see Listing 2a. Type this one in
(from 8200), and run it XC. You should
get the picture we designed earlier in the
top left hand corner of the screen. Press a
key, and the program ends. Do you un-
derstand what went on? The comments
given may be of some help! Notice that
we didn't need to switch on mode | graph-
ics — it’s automatic! (Chip-8 operates en-
tirely in this mode.) For more examples,
we need more concepts so read on.

Colour registers

The colour register is another VZ/Chip-8
object — like HIT. This, however, is used
to store colour data for some commands
(Fx29, 8xyD and 8xyE). The register takes
on the following values for colours: 00 —
invisible or colour 0, 55 — colour 1, AA
— colour 2, FF — colour 3. All other
values give combinations of these, and are
best experimented with! To load the co-
lour register with 55, we could use the fol-
lowing sequence of code. 6F55 FFCC,
which says, load VF with 55, then load the
colour register with VF. Once the colour
is set, we can use 8xyD to plot a point, or
Fx29 to draw a number, in the colour that
we have defined. Type in and run Listing
2b for an idea of colour register graphics
operation.

Joysticks and keyboard

The command ExB4, reads both joysticks
at once, and assigns Vx to one of the fol-
lowing values, depending on the joystick
position: 00 — nothing, 2E — up, 20 —
down, 4D — left, 2C — right, OD — fire.
These codes were chosen as they corre-
spond to the cursor control keys on the
VZ keyboard. Using ExB3 instead of ExB4
reads the keyboard and allows the result
of this command to be treated in an iden-
tical manner to the ExB4 command it re-

‘places. The break key returns a value of

01 if it is pressed, so it too can be easily
tested for.

ETI October 1986 — 29

Printing out numbers

See Listing 2c for an example of number
printing. The Chip-8 interpreter has shape
data for the numbers 0,1,2,3...D,EF au-
tomatically built in. All that is required is
to retrieve them. The statement Fx29 does
just that: retrieves the shape data for the
last digit of Vx. If V8 is 7A, F829 re-
trieves data for the number A, and sets
the index register to point to the place
where the retrieve data is stored, so that
the next display command will show the
correct thing. (The data is stored in sys-
tem memory and will never get in the way
of one of your Chip-8 programs.) That’s
OK for single digit numbers. But what
about bigger ones, like 8A, EB etc, or
even decimal numbers (for game scores,
for instance)?

The process of printing decimal numbers
is easy, but fairly long, if you write in
Chip-8. See Listing 2d, which repeatedly
counts from 0 to 99, for an example.
Some important commands are the follow-
ing.
%i) Fx33, converts Vx to a three digit
decimal number, and stores each digit in a
different memory location, pointed to by
the index register. The hundreds get
stored at I, tens at I plus 1, and units at |
plus 2, so that if we could load these
values into variables, each digit could be
displayed in the usual way.

(if) F265 loads the memory from I, into
variables VO, V1 and V2. VO contains the
hundreds, V1 the tens, V2 the units. We
can now easily display each digit.

Notice also that the printing process is
put in a subroutine at location 228, this
saves me repeating the whole process in
order to remove the numbers. (Recall: to
remove things in Chip-8, simply re-display
them.)

How to draw large shapes

8xyE is a command designed to draw large
shapes on the graphics screen. Often, the
object to be drawn is simple in structure,
yet too big for a single 8 x 16 dot shape so
under these circumstances, this command
is used. 8xyE uses data pointed to by the
index register, and also a ‘SIZE’ value
stored in VF, to draw the shape from the
point (Vx, Vy). VF equals 1 allows the
shape to be drawn exactly as defined. VF
equals 2 draws the shape twice the size in
both x and y directions, etc. Shape data is
given by a series of bytes, from two to as
many as required. (Shape data for this
command has no maximum length.) The
last byte is always 00, required to tell the
interpreter when the end has been
reached! Each byte, which is made up of

eight bits, contains eight pieces of infor-

30 — ETI October 1986

CHIP-8 INTERPRETER

TABLE 2 — VZ/CHIP-83 COMMAND SUMMARY

0000 No operation. Does nothing.

00AO Store | on the subroutine stack.

00A8 Take | off the subroutine stack.

00AE Load | with the subroutine stack pointer.

00CO Set colour to set 0 (green background).

00C1 Set colour to set 1 (buff background).
00EO Clear the screen.

00EE Return from a subroutine. .

Onnn For nnn larger than OFF, calls a machine
code routine at location 8nnn. Allows user
machine code subroutines.

1nnn Go to 8nnn.

2nnn Go sub 8nnn.

3xyy Skip the next instruction if Vx equals yy.

4xyy Skip the next instruction if Vx does not
equal yy.

Sxy0 Skip the next instruction if Vx equals Vy.

6xyy Load Vx with yy.

7xyy Add yy to Vx.

8xy0 Load Vx with Vy.

8xy1 Load Vx with Vx OR Vy.

8xy2 Load Vx with Vx AND Vy.

8xy3 Load Vx with Vx XOR Vy (exclusive or).

8xy4 Load Vx with Vx plus Vy (the carry is
stored in VF).

8xy5 Load Vx with Vx minus Vy (the carry is
stored in VF).

8xy6 Load Vx with Vx multiplied by Vy (carry is
in VF).

8xyD Piot a point at coordinates (Vx,Vy) with
colour as in the colour register.

8xyE Draw a shape with data pointed to by |,
of size VF, beginning at the point (Vx,Vy).

9xy0 Skip next instruction if Vx does not equal
Vy.

AnnnLoad | with 8nnn.

Bnnn Go to 8nnn plus VO.

" ExA1Skip the next instruction if Vx does not

Cxyy Load Vx with a random number ANDed
with yy.

Dxyn Show a pattern with data pointed to by |,
consisting of n rows with the top left hand
comer at (Vx, Vy).

Ex9E Skip the next instruction if Vx equals the
key that is down.

equal the key that is down.

ExB3 Load Vx with the key that is currently
down.

Ex84 Load Vx with the present joystick posi-
tion.

FO0O0 Jump back to the editor or restart the pro-
gram if no editor is present.

Fx02 Set the sound pitch to Vx.

Px0A Wait for a key to be pressed and load Vx
with that key.

Fx18 Beep for Vx cycles.

Fx19 Produce white noise (hiss) for Vx cycles.

Fx1E Add Vx to I.

Fx29 Produce a digit pattemn for the last digit of
Vx and point | at this pattern (colour is
given by colour register).

Fx33 Convert Vx to a decimal number and
store each digit in a different byte (100s,
10s, 1sin 3 bytes from 1).

Fx55 Store VO through Vx to memory pointed
to by | (on completion, | is | plus x plus
1).

Fx65 Load VO through Vx from memory
pointed to by | (on completion, | is | plus
x plus 1). Opposite of Fx55.

FxCC Load the colour register with Vx.

Any other commands should be avoided —

their functions are not defined, but in general,

they do not represent no operation.

TABLE 3. PITCH/DURATION VALUES FOR SOUND COMMANDS

Pitch Duration 2 Duration 1 Duration 4 Duration Ya
c79 79 3C "E OF
Db 72 80 40 20 10
D 6C 88 44 22 "
Eb 66 90 48 24 12
E 60 98 4C 26 13
F 5B A0 50 28 14
Gb 55 AB 55 2B 15
G 50 B5 58 20 17
Ab 4C Co . 60 30 18
A 48 c8 66 33 19
Bb 44 o7 » 6C 36 18
B 40 E4 72 39 1C
Cc 3B F2 79 3B 1E

(Other octaves can be approximated by halving and doubling the pitch and duration values.)

[por | LEFT | RIGHT | DOWN

WO | ONE |

UP FOUR

Figure 2. 8xyE allocation of bits. A ‘1" in the bit position activates the associated words, eg. PLOT

UP and LEFT 5 is 11001101,

mation; Figure 2 gives the key to this. The
process of drawing a shape involves direct-
ing an invisible cursor about the screen (in
eight possible directions), leaving trails as
we go if required! A typical instruction to
the cursor might be: PLOT UP 2 DOTS,
which is coded as 100010 1 0 using 1s

and 0s. To get this in hexadecimal form,
group data into groups of four : 1000
1010. For each group, convert the binary
number into hexadecimal, in thi$ example:
8A. ’

Example: A square. To draw a square,

imagine the following cursor jrystructions: p

CHIP-8 INTERPRETER

LISTING 1.

7AES = F3 31 FF 8F 3E ©9 32 3B
7AF1 = 78 CD 9C 7B 00 @0 00 21
JAFS = FF 2F 22 1C 7F 21 08 82
7BA1 = 22 1E 7F 2A 1E 7F 46 23
7BO39 = 4E 23 22 1E P’F 78 E6 OF
7B11 = SF 16 7F C6 80 ©8 78 1F
7B19 = 1F 1F E6 1E C6 2E 6F 26
7821 = 7B 88 47 7E 23 6E 67 CD
7B29 = 20 7E 18 D? ES 7B 4E /B
’B31 = 61 2”0 c» 7B C4 7B EQ 7B
7833 < FW 7B FC 7B FF 7C 93 7B
7B41 = F6 +C €3 7C 68 2C 23 2C
’B43 = 86 7D 00 ”’D 3D 7B B? 20
’BS1 = 78 7?3 FE EE 20 OF 2R 1C
7BS9 = 2F 23 46 22 4E 22 1C 7F
’B61 = ED 43 1t 7F CS FE AE 38
7B69 = 09 20 2C 2A 1C 7F 22 1@
7B71 = 7F C9 FE AB 20 OF 2A 1C
7879 = JF 23 46 23 4t EC 43 10
/B81 = P2F 22 IC 7F CS FE AQ CO
’B89 = 2a 1C JF ED SB 18 7F 22
o891 = 28 72 2B 22 1C 7F C9 FE
/B33 = EB@ 20 13 21 @@ 70 11 @l
’BR1 = 7@ 75 @1 FF @7 ED BQ 3A
/BA9 = 3B 78 32 08 68 C9 E6 FO
’BB1 = FE C@ C@Q 73 12 17 17 17
’BBS = E6 10 C6 03 32 3B 78 18
’8Cl1 = E6 CS C9 2A 1C ?F ED SB
/BCS = 1E 7PF 73 28 722 2B 22 1IC
/BDi = JF 18 8D 1A BY CO 2A 1E
/809 = 72F 23 23 22 1E 7F C9 1A
7BEl = B9 C8 18 F2 79 IF 1F 1IF
’BES = 1F E6 OF 6F 26 7F C9 CD
JBF1 = ES 7B 4 18 DE CD ES 7B
7BF3 = 4E 18 E4 73 12 C9 1A 81
2C@1 = 12 CS CD ES 7B 79 E6 OF
’CB39 = FE @6 28 2F 30 47 FE 03
2Cl11 = 28 13 38 15 B? 20 @3 7E
2C19 = 12 C9 33 20 @4 1A BB 12
’C21 = C8 1A AB 12 CS 1A AE 12
/C29 = C9 FE @4 20 @A 1A 86 12
2C31 = 3E @0 8F 32 @F 7F C9 1A
’C39 = 96 18 F4 DS 4E 1A SF @6
7C4]1 = 08 16 @0 62 6A 29 CB 11
’C43 = 30 @1 13 18 F8 D1 7D 12
7C31 = 7C 32 @F 7F C9 FE @D CA
2C53 = 34 PE FE OE CA 28 7E C3
7C61 = 00 Q0 ED 43 18 7F CS 3A
7C69 = @@ PF 6F 26 900 @S 22 lE

’C?1 = 7F C9 21 20 7F 34 6E 26
2C?9 = 24 3A 21 7F 86 2B AE 32
7C81 = 21 7F Al 12 C9 739 E6 OF
7C83 = B” 20 @2 3E 1@ D9 47 DS
?C31 = CD ES 7B 7E 26 @@ 87 87
7C39 = 6F 29 239 29 44 4D 1A E6
7CAl = 03 DS CD 7@ 7E SF ©8 D3
7CA9 = AF 32 @F 2F 2A 10 7F S6
2CB1 = 23 SE 23 ES 2E 90 73 87
7CB3 = 28 89 CB 3A CB 1B CB 1D
7CC1 = 3D 20 F? 7?A CD E4 7C 7B
7CC9 = CD E4 7C 7D CD E4 7C DS
7CD1 = 79 C6 20 4F 78 CE QO E6
7CDS = @7 47 08 SF ©¥8 D9 E1 1@
7CEl = CE D3 C3 DS B? 28 11 6@
7CES = 69 16 78 13 57 AE 27 A2
7CF1 = BA 28 @S 3E @1 32 @OF 7F
7CF3 = 7B 3C E6 1F SF D9 CS 73
2001 = FE B3 28 19 30 1E DS CD
’D@S = F4 2E DS 47 1A BB 739.28
7011 = 06 FE Al C@ C3 D? 7B FE
’D19 = SE C@ C3 D” 7B DS CD F4
7D21 = 2E D9 12 C9 DB 20 @6 @S
7029 = 1IF 30 02 10 FB 3E 37 80
7031 = BF 26 7D 7E 12 C9 ©@ 4D
#D38 = 2C 4D 20 2E 79 FE 29 28
7041 = 48 30 44 FE 18 28 44 30
70438 = 51 FE 02 20 @9 1A 6F 26
70S1 = @8 23 22 96 7D C9 FE @A
2053 = 20 1B D9 CD F4 2E B” 20
’D61 = FA CD F4 2E B”? 28 FA CD
7069 = F4 2E B? 28 F4 08 CD 5@
2071 = 34 08 D9 12 C39 21 FE 8A
707292 = 7E FE ES 20 @4 23 PE FE
2081 = 88 C2 ES 7”A C3 FU 8A 18
7089 = 65 18 42 1A 6F 26 00 2%
#0381 = 29 23 4D 44 21 2D @@ C3
/D3y = 5C 34 FE 1E 20 AC 2A 10
/DAl = /JF 1N 4F 06 @0 039 22 10
7DAY = 72F C3 1A 6F D9 16 21 3A
’0B1 = 4A D3 3A 3B 78 57 @E 10
’0B3 = D3 CD 73 7C D39 AA S? 32
?DC1 = 00 68 06 70 10 FE ©D 20
’DC9 = EF 2D 2@ EA C9 1A E6 OF
2001 = 47 87 87 80 C6 30 SF 16
2002 = 2F ©E @S 41 21 12 JF 22
JUE1 = 19 7F 1A E6 FF 27 23 13
+DES = 36 ©W¥ 23 1@ FS CY9 FE 65
/DF1 = 28 2A 3@ 20 FE 33 20 2F

.7E19 = 32 SF 7E C9 1C 4B @6 @0

JDFY_ = 1A 2A 10 JF 086 64 CD @9
7E@1.= JE @6 @A CD @3 7E 77 CS
7E@9 = OE 00 18 @2 OC S0 B8 30
7E11 = FB 71 23 C9 1A 32 ES 7D

7E21 = 58 2A 1@ 7F C3 FS 7E 1C
7E29 = 4B 06 ©0 58 2A 1@ ’F EB
7E31 = (3 28 7F 1A 4F 46 AF 32
7E39 = OF PF (B 79 C0 78 FE 4@
7E41 = DB 82 82 of 26 @@ 23 29
7E49 = 239 2?9 51 @9 1F IF E6 1F
7ES1 = 4F 06 70 @3 ’A E6 @3 C6
7ESS = 6C SF 16 7E 1A EB FF 57
7EB1 = AE 22 A2 BA (8 3E @1 32
7EBS = OF 7F C3 CO 30 ©C @3 4F
7E?1 = D39 1A IF 1F E6 1IF C9 1A
7E?3 = 4F 46 3A OF 2F SF DD 2A
7E81 = 1@ ?F AF 32 @F JF 18 11
7EB89 = LS 7B @8 7?8 84 42 9 85
7E91 = 4F ©8 3D 20 FS 15 20 F1i
7E99 = D! CD (B 7E (8 (B /F 28
7EAl = E2 DS 7B @8 LS ug Ci (U
JEAS = 3B JE Js /3 8% 4/ /9 83

JEBl = 4F @8 3D 29 Et i) 29 EN
/EBY = Dl CD CB V£ .8 1B 7F 20
7EC1 = E@ C5 D3 C1 i) 36 7E D9

7EC3 = 18 BE 21 @@ 20 00 7t o
7ED1 = B? C8 EB @7 2@ ©? 2t @§
7EDS = 57 N0 JE @e Ci: 72 Ce 27
JEEl = 28 @1 0l (B EF 76 w©l 2C

7EE9 = (B 6/ Zo &1 z4 Lo SF ¥y
JEF1 = 01 2% b, & b BY Y2 10
JEFQ = R LY g WY 28 sl B
JF@1 = 11 11 i) 31 it ¥ 5t oad
2FO9 = 11 11 13 il 1boino1noin
JELL = 10 il ou. i bl v

JFle = 11 PR SRt N

JF21 = 11 08 v2 20 9D 29 A i
JF23 = BB EB 22 13 JF (3 @@ rC
7F31 = CC CC CC FC 3@ 3¢ 30 32
7F39 = 3 FC @C FC C™ FC FC @C
7F41 = FC @C FC (@ C2 (C FC AC
2F49 = FC C@ FL @C +L FO LB FC
FS1 = (C FC FC ©C @l i @t +C
2F58 = CC FIE €C FE FL &8 G @l
JFEl = FC FL CC FC CO L0 k@ (C
2FB8 = FC CC F& FL LE 8 18 FC
771 = F@ (C CC CL PO FC LB FC
7F79 = (@ FC FU (O FB tp (0 QU
Fgi = Q0 ©

PLOT RIGHT 1 DOT, PLOT DOWN 1
DOT, PLOT LEFT 1 DOT, PLOT UP 1
DOT, END. From Figure 2, the codes
are: 10100001,10010001,1100
0001,10001001, ‘00". That is: Al
91 C1 89 00 in hex. The program shown in
Listing 2e uses this data to draw squares

32 — ETI October 1986

of random sizes all over the screen — try
it!

Using sound commands

Table 3 shows pitch and duration values
used in VZ/Chip-8 sound commands. The
values given here are not tuned to a stand-

ard pitch, but are chosen so that the scale
sounds reasonably tuneful when played.
To play a note, of duration V1, at pitch
V2, use a segment of code like: F292
F118. Be sure to use the correct duration
for the pitch under consideration, other-
wise your tunes will sound ypeven! You

LISTING 2a.
8200 — 6A 00 — put ‘00" to VA
A2 0A — point | at 820A, the start of the shape data
DA A9 — show a nine row shape at (VA,VA) ie (0,0)
FB 0A — wait for a key to be pressed, store its value in VB
FO 00 — end
820A — 0A A8
09 98
0A A8
00 CO
03 FO
3C CF
00 CO
03 30
0C 0C -

data for the shape in Figure 1.

LISTING 2b. RANDOM DOTS
8200 — CA 7F — put a random number (less than 7F) to VA
CB 3F — put a random number (less than 3F) to VB
CC FF — put a random number in VC
FC CC — load the colour register with VC (ie: random colours)
8A BD — plot a point at (VA,VB), a random screen position
EF B3 — scan the keyboard and load the key pressed into VF
3F 01 — if that key is ‘01" (the BREAK key), skip the next instruction
12 00 — otherwise, go back to the start (plot another point)
FO 00 — end; If BREAK key is down, the program will end

LISTING 2c. SCREEN FULL 0’ NUMBERS
8200 — 6F AA
FF CC — load colour register with blue
6A 00 — ‘00" to VA
6B 00 — ‘00" to VB
8208 — 6C 00 — ‘00" to VC
820A — FC 29 — prepare to show VC as a number
DA B5 — show the number at (VA,VB)
7A 08 — ircrease VA by '08', the next number will be beside the one just shown
7C 01 — increase VC by ‘01", the next number to display is one more than the last
3C 10 — if the whole row has been shown, skip next instruction
12 0A — otherwise, go back to 820A and show another number
7B 08 — prepare to show on next row; increase VB by '08’
3B 40 — if we have finished the last row, skip next instruction
12 08 — otherwise, go back to 8208, begin a new row
FF 0A — full screen; wait for a key to be pressed
FO 00 — end

LISTING 2d. COUNTING

8200 — 6F FF FF CC 6A 00 22 28 6B 00 6C 00 7C 01 3C 00
8210 — 120C 78 01 3B 06 12 0A 22 28 7A 01 4A 64 6A 00
8220 — EF B3 3F 01 12 06 FO 00 A2 40 FA 33 A2 40 F2 65
8230 — 6B 00 6C 00 F1 29 DB C5 7B 04 F2 22 DB CS 00 EE

8240 — 00 00 00 00

LISTING 2e. LOTS OF SQUARES

8200 — 65 FF F5 CC 6A 00 C6 7F C7 3F C5 1F 86 55 87 55
8210 — 85 54 75 01 8F 50 A2 24 86 7E 7A 01 3A 20 12 06
8220 — FF A F0 00 A1 91 C1 89 00 00

LISTING 2f. CHIRP
8200 — CE 07 7E 02 CA OF FA 02 FE 18 7A 01 3A 18 12 06
8210 — EF B3 3F 01 12 00 FO 00

5'0;5'_

don’t have to stick to the pitch and dura-
tion values shown in Table 3, so other ef-
fects, such as sirens, can be created. A
sample sound program is shown in Listing
2f.

Saving completed programs
When you have written a program, and
are satisfied. that it does what you want,
save it. There are two options here:

(i) Save the program with the editor.
This is for programs which still have not
been fully finished. Save all memory from
7AE9 to 8F30.

(ii) Save the program without the editor.
This is for complete programs, only save
memory from 7AE9 to the end of your
Chip-8 program.

In either of the above cases, tape users
will have to put up with the program run-
ning whenever it is loaded, so if the pro-
gram is incomplete, make sure it ends
otherwise you will never be able to edit it!

NOTE: We have had complaints from read-
ers who could not get the editor listed last
month running. Printed below are correc-
tions to lines 70 and 380, and two new
lines 770, 780 to be added. As well as this,
we understand that in some issues of the
magazine, the figure 32 between 90 and D6
in line 510 was printed so indistinctly as to
look like 37. So if you have any problems
after amending the listing, check line 510.

CORRECTIONS TO THE ‘EDITOR’
LISTING.

THE FOLLOWING ARE THE CORRECTED
LINES.

70 IFT = 118550, PRINTUSR (1)

380 DATA10,78,C9,DF ,20,E9,F1,11,
27,8€,C3,78,88,00,00,00

770 DATAB8B,C3,Ec,8B,2D,22,A0,78,
C9,00,00,00
780DATAZX

NB. THE LAST TWO LINES NEED TO
BE ADDED TO THE PROGRAM.

Those who couldn’t be bothered typing in List-
ing 1 can get a copy (tape only) by writing to
‘Chris Griffin, PO Box 233, Diamond Creek,
Victoria 3089’ and including $5 with the letter
(for postage, packing, tape, and my timef).

"ET! October 1986 — 33

(jUSASUN PUNOS [[IM SIUM} INOA ISIM
{10 ‘uoneiapisuod 1apun yod sy 10j
JRINP 3091100 94} Isn 03 2Ins 39 '8l |4
4 9)I] 9pOO ‘JO JUSWIIS B ISN ‘TA
'd e ‘1A uoneinp jo ‘ajou e Aeid oy,

‘paded usym [njaunj A|qeuoseal spunos
)S 943 eyl Os uasoyd aie Inq ‘yoyd pie

-puUElS B 0} pPaun} JOU I8 319Y UIAIZ sanjea
9y ‘spuewwod punos §-diyn/ZA ul v_oms
sonjeA uoneinp pue yanid smoys ¢ I|qeL

spuswwod punos Bujsn

i
A1} — U2219s 9y} IAO [[B SIZIS WOPUERI JO

9861 18QOQ0 |13 — ¢E

sarenbs meip 03 ejep syl sasn 9z Junsry

ur umoys weidoid ay] "xay ut g 68 1D 16
TV stieql "00,. ‘T00T1000T‘T000
00TTTO00TQO0T‘TO000T 0T :aJe
s3pod 9y} ‘g aindl] wold "aNd ‘10d
I dN 1LO01d ‘LOd 1 14371 1071d ‘Lod
I NMOd 1O1d ‘1L0d T LHON 101d

\J

9 98 = [83c¢

Jd@ 00 00 84 07 J4 24 @) = 6L4C¢ 32 92 €€ 34 82 V€ YZ 8Z = 130/ 31 ¢Z 60 90 9Z 49 d4¢ 08 = 69J¢
74 @2 34 94 22 22 20 04 = [<c4c¢ G9 34 8] G3 BT €2 @Y 9L = K304 g€ 60 J4¢ @1 €b 03 00 v = 19J¢
74 90 00 B2 24 94 22 24 = 694¢ €1 €2 42 44 G3 Y1 374 61 = 1317 60 3I¢ 8¢ ¥YI 30 34 J¢ vE = ©653C¢
JJ) 04 22 232 24 23 24 24 = 194¢ 22 32 71 12 1b G0 30 3¢ = 60 ¥l 00 34 63 d4¢ 40 Z€ J¢ = 16«
)0 24 22 34 24 22 24 20 = 6G4¢ gl 4G BE 90 08 (¢8 ¢8 ¢b = 103¢ 2T O¢ 10 84 @1 61 10 BE = 6H1¢.
J4 00 00 00 2@ 24 24 22 = 1G4¢ 30 93 YT 62 ¥Y3 B2 0Z 43 = 620¢ [T 83 62 Y9 Z9 00 91 80 = b
J4 02 234 234 20 24 00 24 = 6b4C 02 00 34 01 B¢ 90 89 VY = [2J¢ 899 46 JYI 3b SO b4 81 96 = BEI(
JO0 24 20 0 ©¥J 24 29 23 = [vJ¢ Z€ ¢S Yy 60 I¢ €¢ 0J 60 = 680¢ Yl 62 d4¢ 40 ZE€ 48 00 3€ = 1£0(¢
J0 24 24 03 24 20 24 € = 6£€3¢ QT 30 ¢S 8¢ 8€ Y& 60 ¥b = 180¢ Zl 98 Ul U¥d BZ b0 34 60 = 623¢
Y€ @€ B€ € 124 22 22 22 = Ig€4¢ ’yc 12 91 60 49 YI 63 4¢ = 64ac 2l 3Y Yl 62 21 9Y Yl 62 = 122¢
J4 90 60 d4¢ Ol ¢ZZ 83 ©¥8 = 624¢ vl ZZ 60 VY 90 4db Yl d¢ = 194Ac ¢l 98 Yl b0 8¢ d€ 67 21 = 612¢
(03 90 90 00 00 ©0 RO (1 = (24 Q1 ¥YZ 2@ 02 31 34 b€ 25 = R6BAC 3¢ €0 02 ¢8 SI 8 €1 8Z = [12¢
A S O G O G G O G A R O AR (0 SR =8 O P4 £J) 90 0 1Z bbb Ob €C¢ 62 = 160/ €0 34 ¢b B J4Z 8C 90 33 = 6082
T T 10 10 10 10 10 = 114 62 90 92 49 YI Zb 81 G3 = 58ML 3d9 93 6¢ 8¢ S3 dJ 60 I = 182
trroore 1o 1 1r v 11 = 6047 81 U8 04 €7 ¥Y< 63 ZJ 88 = [80c¢ [8 Yl 62 ¢1 6¢ $3 81 3b = 649¢
tr 1o 1o 1 1o 10 1r 11 = 104¢ 34 3¢ €2 v0 @82 S3 35 3¢ = 6L 8¢ S3 02 30 81 3b 8¢ S3 = 149¢
[l 0@ 00 @0 VO @M 6) J¢ = 633¢ ¥8 34 1Z 62 &1 60 80 bE = 1<0C 02 620 4¢ 9C 49 40 93 41 = 638¢
@l ¢¢ 98 03 62 ¢89 SZ ‘I1¥ = 43¢ 9GS 020 89 b4 8C ¢8 3¢ b4 = 693¢ 31 41 41 6¢ 24 81 82 68 = [38¢
8¢ 46 87 bZ 10 8¢ ¢9 897 = 633¢ 02 ¥4 8¢ ¢8 3Z2'v4 02 ¥4 = 190Q¢ ¥l 62 J¢ 31 ZZ €2 €Z d4¢ = 608¢
JZ 1M 82 49 827 4dC [@ 82 = 133¢ @2 ¢89 32 v4 0D 60 891 BZ = 6SAC 31 ¥YZ BD 68 Yl 08 81 4¢ = 1089c¢
(¢ 82 €Z 00 B 3¢ 40 ¢S = 603¢ Ye 34 62 0¢ 96 ZZ €2 9V = 150¢ Q1 ¢ 82 Z¢ 82 €¢ d4¢ 31 = 628¢
80 3€ ¢0 OZ (¢0 93 87 ¢8 = 1U3c¢ 9Z 49 Y1 60 OZ Z0 34 1S = &6b0c g8 03 J¢ 201 ¥g 62 G2 93 = [28¢
22 3¢ 00 92 R 1Z 39 81 = 623« 9€ bbb 82 KA1 34 bbb 0f 8b = [b0L 8l 8¢ 8¢ Z€ 60 92 Ol 93 = 688¢
60 3¢ 8¢ 02 2 60 GJ @3 = 123¢ 8¢ 62 33 64 3¢ 9Z db 2¢ = 6£0Z (T <1 <1 <1 6¢ @0 ©) 34 = 189¢
@Z 3¢ 820 87 3¢ 83 02 [0 = 683¢ 0o 90 67 Z1 3¢ Q¢ 9Z 49 = [g0Z 3 93 60 89 VO ZE€ 8¢ 8€ = 6YY<L
¥3 @2 ST 33 0Z Q€ 89 4b = 183¢ P8 ¢€ 3€ 84 01 Zv B¢ 41 = 620¢ Yg€ 08 03 ¢0 44 [0 G¢ 0L = TY8¢
G8 B¢ ¢b ¥8 8¢ 60 3¢ 8¢ = 6Y3IL G0 90 ©Z 80 67 Z1 60 32 = 1CA¢ 10 Il B¢ @@ IZ €1 OZ V3 = 668¢
02 12 60 GJ 80 8¢ G0 ¢3 = Y3 b4 0J 60 8¢ ¢d €7 @7 36 = 610 34 62 d4¢ 21 ZZ 82 Z£ 82 = 168¢
8Z 4¢ 82 80 3¢ 82 02 10 = 663¢ 33 8¢ ¢0 €73 92 Y 34 990 = 110< ¢ 4¢ @1 8S 03 J4¢ 21 Yg = 6889¢
4 82 ST G4 @2 Q€ 80 4b = 163¢ 8Z 6¢ 88 Yl ¢b 60 3C b4 = 600C Q) QY 34 60 J¢ IV ¢Z d¢ = 188¢
G8 6¢ ¢b b8 8¢ 80 8¢ SA = 683¢ gJ 60 31 @€ 61 82 €8 34 = 100c¢ @1 €b 03 3b €C 9b € 372 = 628C¢
[T 81 J¢ 40 € 49 J¢ @1 = 183¢ 6¢ 62 60 4S 41 93 2€ 8¢ = 642« I ¥YZ 48 B2 8Y 34 62 3¢ = 1c8¢
JZ 00 46 d4¢ 40 Y€ 9b d4b = 6¢3¢ 3j¢ 40 Z€ 190 3€ GV 8Z Y8 = 143<¢ Q1 ZZ d4¢ 21 ¥Z 2JZ 82 60 = 698¢
JdI 62 41 93 41 41 WUl 60 = [1<£3¢ 29 ¢¢ 39 ¢S 61 B¢ 91 68 = 633¢ 8€ 3Y 34 627 J¢ 3IT €b 03 = 199¢
Jb €0 20 BE B2 62 J4¢ 40 = 693¢ P9 IT 82 ¢g 60 627 60 30 = 130¢ 4¢ 21 22 3b €2 9b €2 3¢ = 6C8c¢
Z€ 1® 3€ 82 ¥8 ¢Y ¢ 3I¥Y = 193¢ Q1 I3 60 890 4S 80 ¢b 0 = 602¢ Jl ¥Z 40 @Z 33 34 6¢ 08¢ = 1G68¢
¢S 44 93 Yl 3¢ 91 46 29 = 6G63¢ 93 00 33 8¢ db ©Z 97 6¢ = 107« P2 ¢8 8¢ 0 4A¢ 90 4A¢ 98 = 6+8c¢
8] €0 93 Y¢ 60 0 90 4b = 1G63¢ 60 3¢ $3 03 Q¢ ¢ v3 03 = 633 ¢ £¢ ¢ 89 J¢ €9 I/ 94 = 1v8c¢
341 93 41 41 @0 IS 6¢ 62 = 6b3< 8¢ J¢ v3 Q) Y¢ ¢4 82 0 = 122« 8¢ €8 J¢ 44 8¢ J3 HC A3 = 6E£8L
6Z 6 00 9Z 49 ¢8 ¢8 ©A = 1b3c¢ ar 83 g1 87 ¥€ 83 60 8Z = 68J3¢ 8¢ 93 8¢ b3 8¢ vI UcC 19 = 1€8¢
b 34 8¢ @2 6¢ 82 3¢ 40 = 6E£3C (8 6¢ PO 32 S3 €Z 38 €2 = 182¢ 8¢ 3b 8¢ 63 ¢0 81 3¢ 3¢ = 628<
ZE 4Y 9b 4b Y1 d4¢ 82 €3 = 1€3¢ QS d4¢ 91 YZ d4¢ 40 g€ 49 = 6YI(03 ¢9 39 €2 3¢ ¢b 80 8¢ = 128c¢
83 3¢ @1 Y¥Z 8C Q0 90 8b = 623¢ 60 80 4S5 3¢ ©@¢ 0J 60 €0 = 1YL 92 49 3¢ 92 31 93 J1 41 = 618¢
J1 3¢ G4 €3 4¢ @1 YZ 8G = 123¢ 93 Ul db bbb 62 6 62 49 = BEIL 3l 8¢ 80 ©8 Q) d4¢ 91 46 = [18¢
0 9@ gb 21 B2 3¢ 4S 2Z€ = 613¢ (8 (8 0Q© 9Z 3¢ 8¢ S3 02 = 162¢ 3d0 93 8¢ d4¢ 31 ¢Z €2 3b = 683
Q¢ S3 Z€ Y1 62 €2 ¢ 84 = 113¢ 60 ¢b 60 B 3€ Z0 BZ <8 = 68J¢ €2 9b J4¢ 31 YZ J¢ 31 Z2 = 108c¢
O 88 06 20 0 81 0V 3V = 603¢ 40 93 6¢ 62 21 IY J¢ 1Z = 182« Z8 @8 1T 4¢ 21 ZZ 4¢ 34 = 64Y¢
62 ¢¢ 3¢ 60 02 Y 98 3¢ = 1R3¢ Z€ 3Y 82 98 J¢ 12 Y€ bZ = 6cI¢ [Z 9@ P2 PO 8¢ 26 (02 8¢ = [3JY(
60 02 b9 90 d¢ @1 YZ YI = 640¢ 9¢ 39 b€ J¢ @C 1Z 67 J¢ = 1L g€ Z€ 60 3¢ 48 d44 1€ €4 = 63Y¢

"I ONILSIT

e mrime » LPPPS LE s - T T

d313Hdd3L1NI 8-dIHD

Hardware and software
aspects of screen handling
on the VZ'200/300 Part 1

Bob Kitch

This article describes the hardware aspects of the Motorola MC6847
Video Display Generator chip which is used in a number of
microcomputers. Although this is an older device and lacks some of the
features of newer chips, it is nevertheless a well-used device and is quite
easy to interface and comprehend. To illustrate the MC6847, its use in
the VZ-200 and VZ-300 computers is detailed. Additionally, some
software implementations are explained and some simple hardware
modifications to the VZ are given to improve screen resolution and

display appearance.

THE MOTOROLA MC6847 Video Display Generator (VDG)
chip (sometimes referred to as a Cathode Ray Tube Controller
— CRTC) is used to interface data read from the video RAM
section of memory and to produce a modulated RF video sig-
nal or monitor output. The MC6847 is capable of operating
in 14 different display modes. However, only a few of these
are usually implemented in a particular installation. The
MC6847 was conceived as one of the family of devices to in-
terface with the Motorola M6800 and M68000 microproces-
sor families, but it can easily be adapted to other
microprocessors. The VDG can be found in video games,
home computers, process control displays, communications
and graphics applications.

The VDG has the complex task of converting data from the
screen memory into the form necessary for the raster scan
display used in television and monitors. On these devices,
the image is ‘drawn’ on the screen one horizontal scan line
at a time. The ‘spot’ moves across the screen from right to
left and its brightness or colour (chroma) is varied to produce
the required display. In practice, the whole screen is built
up in two passes, the first on even-numbered lines and the
second on odd-numbered lines, by a process called ‘interlac-
ing’ which helps to avoid flicker. The process occurs every
20 ms, or 50 half-frames are drawn every second.

Two types of VDG chip are produced by Motorola — the
MC6847 for non-interlaced displays and the MC6847Y which
interlaces the video display. the suffix ‘P’ after the device
number identifies a plastic package. An enhanced version
—the MC6847T1 — is also available but it is not strictly com-
patible with the MC6847 as-it requires less external circuitry
and has some additional features.

A timing or clock pulse is required to tie the scan rate and
memory access cycles of the VDG in with that of the
microprocessor (MPU) — otherwise chaos would reign on
the bus systems! An external (to the VDG) clock is used to
synchronise both the VDG and the MPU. A clock frequency
of 3.58 MHz is usually selected to give the correct scan rates.
If a common clock is used then often the speed of the MPU
is restricted by the video display.

The format of the display area under the control of the VDG
is actually 256 ‘dots’ across by 192 ‘dots’ down giving a total
of 49 152 fundamental picture elements (pixels) under the

<*+— 256 DOTS —»

DISPLAY AREA
(49 152 dots, all under VDG
control in oll modes. Each
one of up to 8 colours when on,
depending on made.)

n
-
o
(=]
]
)

* One on each non—interlaced line. For interiace, the lines of the odd
fleld are copled Into the even field thus doubling the number
of disployed dots.
Figure 1. Typlcal Format of the Monlitor Screen. The border
is black in Alphanumeric and Semigraphic modes and
green or buff in Graphlc modes.

‘control’ of the VDG. Each pixel may be one of up to eight
colours, depending upon the mode selected (see Figure 1.).

As you will have observed, the MC6847 does not utilise the
entire video screen. The standard video screen consists of
262 scan lines extending across the screen, but the usable
display window is offset from the top by 25 lines and extends
192 lines down the screen with a further 25 lines at the bot-
tom being offset. Across the screen, the timing pulses are
blanked-off to reduce the useable horizontal width. The
linearity of images is better in the central portion of & screen
and this is used by the VDG.

The screen is ‘memory mapped’ with each pixel on the
screen being represented by a byte (or a number ofbj ts there-
of) in the video RAM. There is a one-to-one correspondence
between the X-Y location of the pixel on the screen and the
address of its control information in memory. The gequence
of memory addresses, which are accessed to extract data to
be converted to a video signal, is controlled by they IIG. The
VDG also keeps track of the position of the moving g pot and
produces the necessary timirg signals to synchronjge the dis-

play to the computer. It produces, for instance, thy pzorizon- p

September 1986 — Australian Electronics Monthly — 89

tal sync pulse to indicate when the end of the video line has
been reached so that the spot can ‘flyback’ to the beginning
of the next scan line. This pulse also permits the MPU to ac-
cess video memory during the blanking period, thereby avoid-
ing flicker.

The decoding of the data input to the VDG is usually done
by a character generator. This may be a pre-programmed,
on-chip ROM in the MC6847 or an external, perhaps
programmable, character generator.

The display modes that the MC6847 may operate in are set
out in Table 1. this tabulation summarises much of the in-
formation about the VDG chip. The way in which these fea-
tures are selected is in-line with most digital devices. The
pin assignment diagram for the MC6847 is shown on Figure
2. The chip is an N-channel, silicon gate device with most
signals being TTL compatible. The device is housed in a
40-pin DIL package. The amount of memary required by the
various display modes is a trade-off against element size or
resolution of the display in pixels. This feature will become
more apparent later.

The lines into, or out of, the VDG can be grouped into six
classes but classes i) to iv) are the most important to this dis-
cussion.

i) Address Lines. (DAO — DA12) These permit up to 8K
of video memory to be directly addressed, although only
6K is ever required. The absolute location of the video
memory in the computer system will depend upon the
address decoding used. The starting address is located
at the upper left-hand corner of the screen. The activity
of the address lines is regulated by the *MS pin and the
display mode selected.

Date Lines. (DDO — DD7) These are used to input values
in RAM memory to be mapped onto the screen. The
values are decoded within the chip with repsect to shape,
luminance and chroma (see later).

Mode control Lines. There are eightimportant lines into
the VDG which control the 14 display modes. These are
detailed in Table 1. Three major types of display may
be selected: (a) Alphanumerics, (b) Semigraphics and,
(c) Graphics.

The implementation of these displays within the VDG
is quite different in each case.

ii)

iii)

[s]s]:}
[s]s]e]

001
0D2
003
DD4
DDS

TOP WVIEW

0O7
css
HS

FS

RP
A/G
A/S
CLK -
INV -
INT/EXT
GMO
oM1

Y

GM2
DA4
DA3
DA2
DAl
DAO
DA12

Figure 2. Pin-out for Motorola
MC6847 Video Display
Generator chip as used in the
VZ computers.

Switching the screen to Alphanumerics or Graphics
mode is determined by the (*A/G) line.

Switching the screen between Alphanumerics or Semi-
graphics mode is set by the (*A/S) line.

Selection of the internal (on-chip) or external character
sets held in ROM is set by the (*INT/EXT) line. In Semi-
graphics mode this line determines whether SG4 or SG6
mode is selected.

Normal or inverse Alphanumeric displays are set by the
(INV) line. Three lines (GMO, GM1, GM2) are used to
select one-of-eight Graphics modes to be used.

An eighth control line (CSS) selects the colour set to be
used in the particular mode selected. Most modes have
two colour sets available.

In Alphanumeric and Semigraphics 4 modes, one-of-two
background colours is selected and in Semigraphics 6
and Full Graphics modes one-of-two colour sets is
selected.

The operating mode of *A/S, *INT/EXT, CSS and INV
may be changed on a character by character basis in Al-
phanumerics and Semigraphics mode.

TABLE 1:
SUMMARY OF DISPLAY MODES FOR MC6847 VDG
colours bytes memory element—————— Control Lines———
available video RAM mapping size *A/G °A/S °*INT/EXT INV GMO GM1 GM2
Four ALPHANUMERIC Display Modes -
i) Internal ROM Alphanumerics 2 512 byte BX12 0 0 0 0 X X X
ii) Internal ROM Alphanumerics — Inverted 2 512 byte BX12 0 0 0 1 X X X
iii) External ROM Alphanumerics 2 512 byte BX12 0 0 1 0 X X X
iv) External ROM Alphanumerics — Inverted 2 512 byte BX12 0 0 1 1 X X X
Two SEMI-GRAPHIC Display Modes
v) 32 by 16 Semigraphics 4 (SG4) 8 512 byte BX12 0 1 0 X X X X
vi) 32 By 16 Semigraphics 6 (SG6) 4 512 byte BX12 0 1 1 X X by X
Eight GRAPHIC Display Modes '
vii) 64 by 64 Colour Graphics One (CG1) 4 1024 2 bit 3x4 1 X X X 0 0 0
iix) 128 by 64 Resolution Graphics One (RG1) 2. 1024 1 bit 2x3 1 X X X 0 0 1
ix) 128 by 64 Colour Graphics Two (CG2) 4 2048 2 bit 2x3 1 X X X 0 1 0
x) 128 by 96 Resolution Graphics Two (RG2) 2 1536 1 bit 2x2 1 X X X 0 1 1
xi) 128 by 96 Colour Graphics Three (CG3) 4 3072 2 bit 2x2 1 X X X 1 (o] 0
xii) 128 by 192 Resolution Graphics Three (RG3) 2 3072 1 bit sx1 1 X X X 1 0 1
xiii) 128 by 192 Colour Graphics Six (CG6) 4 6144 2 bit 2x1 1 X X X 1 1 0
xiv) 256 by 192 Resolution Graphics Six (RG6) 2 6144 1 bit 1x1 1 X X X 1 1 1

The IEEE standard for electrical state relationships uses the suffix ‘**
instead of the overbar '~' to designate when an electrical signal is
active low.

90 — Australian Electronics Monthly — September 1986

RP

u1s F—-{
VIDEO
DOISPLAY

GENERATOR

£
-

MC8847

4 +3v

css
GMo
*A/S H -

Modification for
improved grophics

A15—-0 oK
DA10-0
u7 DA11
2K
RAM oa12
6118 0D7-0
<ORAM 7000—T7FFF
ENABLE
U4
07-0 OCTAL 07-0
BI-DIR.
BUFFER
LS245
ul o3
05-0 6 BIT
LATCH v
LS174
*WR 8800 Tee

iv) Power Supply.
Vss: 0 V supply — normally ground.
Vce: +5 supply.

v) Video Lines.
These are four analogue signals:

OA B-Y chroma — a three-level signal used in com-
bination with OB and Y to speci-
fy one-of-eight colours.

a four-level signal; the fourth is

used as colour burst timing
reference.

OB R-Y chroma —

Y luminance — asix-level signal containing com-
posite sync, blanking and four lev-

els of luminance.

CHB chroma bias or a test point — not used in appli-
cations.

vi) Device Synchronising Controls.

*MS memory select, three-state control to allow the
MPU to address the video RAM.

CLK 3.579 MHz clock.

*FS field sync to indicate the end of the active display
area during which time the MPU may have access
to the video RAM without causing undesirable
flicker on the screen.

*HS horizontal sync to the TV receiver.

*RP row preset — important when an external charac-
ter generator ROM is used.

From this brief description, a grasp of how the VDG oper-
ates may be gleaned. We will now examine how this partic-
ular VDG chip is used in a home computer application — the
VZ computer.

The MC6847 in the VZ-200/300
computer

In the VZ computer a number of display modes using the
MC6847 are available. Specifically, modes (i), (ii), (v) and (ix)
on Table 1 are implemented as standard on the VZ. These
modes are ‘soft switched’ or software selectable from the
ROM-resident BASIC and will be described in detail later
in this article.

The video display system in the VZ consists of a number
of components or ‘blocks’ — but the heart of the display sys-

5a9-4.

Figure 3. Schematic for Video Display
in the VZ-200 and VZ-300 Computers.

tem is the VDG just described. This device interfaces with
2K of dynamic video RAM which occupies 7000H to 77FFH
of the memory map for the Z80OA MPU used in the VZs. Ad-
ditionally, a hex write-only latch mapped at 6800H (but ex-
tending to 6FFFH due to simplified address decoding)
controls, via software, the display modes implemented on
the VZ.

The analogue outputs from the BDG are processed by fur-
ther video circuitry which need not concern us here. All of
these blocks are synchronised by a 3.58 MHz clock. This is
an instance where the full speed of the Z80A (4 MHz) is not
realised due to impositions by the video display.

More significantly however, the architecture of the VZ has
only allowed 2K of RAM for the video display. This effec-
tively prohibits the implementation of some of the hi-res
graphics modes. [Specifically, modes (xi) to (xiv) in Table 1].
The VZ does not contain an external character generator
ROM and relies entirely upon the VDG on-chip character
ROM. Clearly, the VZ is manufactured to a price (and a very
attractive one at that!) and was designed to interface with
Microsoft’s BASIC Level II ROM routines. Despite these com-
ments, there are opportunities to make a few slight and sim-
ple changes to the hardware around the VDG to implement
additional display modes with improved resolution. It is also
possible to add an external character generator — but more
of these later.

Figure 3 is a diagrammatic representation of the way in
which the MC6847 VDG is interconnected in the VZ com-
puters. The address lines DAO-DA10 (11 lines) are connect-
ed to U7 — a 6116 2K RAM chip — which is mapped as the
video RAM section of memory. Lines DA11 and DA12 are
not connected, thereby limiting the addressable video
memory to 2K. Data lines DDO-DD7 (eight lines) are connect-
ed into the data bus from the MPU of which the 2K video
RAM memory of course forms a part. The way in which the
eight control lines are connected is of interest as these de-
termine the type of displays available on the VZ,

Reference to Table 1 will indicate how the control lines
are configured. The Graphics display group consist of GMO,
GM1 and GM2. As can be seen from Figure 3, both GMO0 and
GM2 are tied low (to ground) whilst GM1 is tied high, to the
+5V Supply. Similarly, *INT/EXT is permanentlytied low,
thereby enabling the on-chip character generator ROM. The
configuration of GM0-GM2 to 010B means that only Colour
Graphics Two (CG2) is implemented when Graphicg mode
is selected.

September 1986 — Australian Electronics Monthly — 91

The remaining four control lines are interesting as they are
not ‘hard-wired’ but are set up to be ‘soft switched’ —
although two quite different techniques are used.

The INV line is connected to bit 6, or DD6, of the data bus.
Thus, whilst in Alphanumeric mode, the second most sig-
nificant bit of a byte contained in video RAM controls
whether a normal or inverse character is displayed. The line
that selects between Alphanumeric and Semigraphic modes
— *A/S — is similarly connected to the most significant bit
or DD7. thus this bit determines whether the VDG should
interpret a particular byte as an ASCII character or a graph-
ics shape.

The remaining two lines are connected into the Output
Latch mapped into 6800H. As mentioned before, this is a 6-bit
write-only latch. It permits certain software commands to
set or reset a particular bit of the latch and hence switch or
control specific hardware interfaces. Figure 4 is a schemat-
ic of the portions of the latch which is of interest to us here.
A copy of the latch is held in RAM at location 783BH. The
*AlG line, which selects between hi- or lo-resscreens, is con-
nected to bit 3 of the Output Latch. If this bit is low or 0,
then the screen is in lo-res mode which corresponds to Al-
phanumeric and Semigraphic modes. If the bit is high or 1,
then hi-res or Graphics (CG2) mode is selected. It is quite sim-
ple to see that the MODE (X) command in BASIC directly
sets this bit of the latch — where X maybe 1 or 0. Note that
bit 3 of the latch corresponds to a value of 0BH on the latch.

The Colour Select line (CSS) is connected to bit 4 on the
latch which maps as a value of 0OFH. The effect of this line
differs according to the mode selected. The CSS pin selects
the background colour of the display and in so doing deter-
mines the colour set which may be displayed. When CSS is
low or 0 the background colour is green, but if set high or
1, then in lo-res the background colour is orange, but if in
hi-resthen the background is buff. Sounds alittle confusing
— but actually it isn’t, given a little thought and reflection
on Table 1 and Figure 1. Furthermore, in hi-res mode this
pin selects which of the two colour sets (each containing four
colours) will be selected. Colour set 0 consists of green, yel-
low, blue and red, whilst colour set 1 consists of buff, cyan,
magenta and orange. Clearly, this pin is set by the COLOR
F, B command where B determines the background colour
and F determines foreground colour.

An understanding of the operation of the mode control
lines gives a good insight into how the BASIC interpreter in-
terfaces with the hardware and the real world via the screen
display.

For the hardware enthusiasts, and others closely follow-
ing this article, the penny should have dropped as to how
other screen modes can be made selectable on the VZ by some
simple hardware alterations.

Improved graphics on the VZ computer

One of the disappointing features of the graphics capability
of the VZ is that the Semigraphics (SG4) and Graphics (CG2)
modes have rectangular characters and elements which con-
siderably detract from the appearance of the displays. This
feature can be remedied.

The following simple hardware modifications are outlined
for those who feel they are competent tackle it. They involve
the installation of three switches on the VZ. Figure 3 pro-
vides an indication of what is required.

If *INT/EXT can be switched high, then Semigraphic mode
SG6 becomes available on the computer. This has the advan-
tage of giving higher screen resolution and, although the
characters are still rectangular, their elements are square
rather than rectangular as in the standard implementation
of SG4 mode.

In Graphics mode, only CG2 is available in the VZ. By
switching GM1 and GM2 it is possible with the 2K of video

92 — Australian Electronics Monthly — September 1986

8T Figure 4. Schematic of Output Latch mapped at 6800H

(26624D) in VZ computers. (Other latches are used to
control plezo-speaker and cassette output)

4 | Q4-—» CSS VDG background colour.
0 green (hi— ond lo—res)

1 orange (lo—res) buff (hi—res)

3 |Q3— A/G VDG display mode.
O lo—res

1 hi—res

1

memory to implement a further three modes (CG1, RG1 and
RG2)."There is little point in switching GMO as there is in-
sufficient memory to cover modes (xi) to (xiv). The element
size in SG6 and CG1 is the same (3x4 pixels) and so there
is little to choose between them — although their usage of
memory is different and the characters in SG6 mode can be
‘specified’ through the keyboard as is done in SG4 mode on
the VZ.

RG1 has the same resolution as the standard MODE (1) dis-
play but is only two-colour and consequently uses only half
the memory space. the real benefit of adding the switches
is in obtaining RG2 mode on the VZ. Although this only two
colour, the element size is 2x2 pixels and is square. This is
a great mode for plotting graphs for instance, where the
screen resolution is 128 elements across by 96 elements down
the screen.

To achieve this modification, use three SPDT toggle
switches. Wire one side of each switch to +5 V, or pin 17
on the VDG, and wire the other side of each switch to ground
or pin 1 of the chip. Cut the tracks leading from pins 27, 29
and 31 (GM2, GM1 and *INT/EXT) and wire the chip side
to the centre terminal of a switch. Thisenables the three con-
trol lines to be switched high or low. (See inset on Figure 3.)

There you have it! It remains now to develop suitable soft-
ware to drive these additional modes. The possibilities
opened by the ‘square’ modes of SG6 and RG2 are exciting.
(Who is going to submit some drivers for this conversion?)

As an afterthought, whilst you have got the VZ on the
bench, why not add a RESET switch? A normally closed
push-button switch inserted into the ‘reset on power-up’line
overcomes the annoying business of powering-down the VZ
for resetting. : W — continued next month.

499.4’

Hardware and software
aspects of screen handling
on the VZ-200/300

Concluding with covercge of the
software interface in the VZ and the
MC6847 VDG, looking at the standard
screen modes.

IT IS NOW OPPORTUNE to briefly discuss the software
interface in the VZ and the VDG. I will only discuss the stan-
dard screen modes used on the VZ — not the additional
modes mentioned in Part 1.

Lo-res/Text/Mode (O).

In the lo-res mode the screen is formatted into 16 lines down
the usable window with each line containing 32 characters.
Thereby providing 512 addressable characters on the screen.
A quick calculation (or look at Table 1) will show that each
character is composed of 8 by 12 pixels {or dots). Further-
more, each character is ‘described’ in a single byte in the
video RAM section of memory. The upper left-hand charac-
ter on the screen is memory mapped onto address 7000H
(28672D), and the lower right-hand character is mapped onto
7000H + 1FFH (29183D). A memory map for the lo-res screen
is given in Figure 5.

A formula is often used to calculate the address of a par-
ticular character on the screen. Let AA be the position of the
character ACROSS the line (which ranges from 0 to 31) and
let AD be the line number DOWN the screen (ranges from
0 to 15). i.e: working in the SE quadrant of an X-Y axis sys-
tem. The relationship between (AA,AD) and the address in
RAM is —

MAPPED ADDRESS = START ADDRESS + (32 * AD + AA)or

Addr = 28672 + (32 * AD + AA)
O 1 2 T 4 5 6 7 8 9

0 2 F O @ @ B &

1 A @ ! 1 @ & . ©® - E
2 E R " 2 B 3 KW HE - -
A C S # = M@ & &3 N
4 D T ¢« 4 (@ w 88 B *° °*
S E U Z & =3 WM B8 B ¢ 10
6 F v X6 @ OB R - e
7 G W 7 o @ 4 G &4 4o
8 H X (8 R B HB ©& -
Q I Yi) Q M N B E "= "
A J Z x : MM Kk 3 B 1 8
E k. C + : o o H = =
C LA\ s . a = = =
D M 1 - = @EW m B B 7 9
E N N N TR . S > B o o
F 0 /07 W [|

G VY
\ _____

110 — Australian Electronics Monthly — October 1986

A B C D E F

Part 2
Bob Kitch

This calculation is often used in games to POKE values into
selected memory locations or when screen formatting via the
use of the PRINT@ statement where it is performed ‘trans-
parently’.

When the VZ is ‘soft switched’' to MODE (0) three of the
modes inthe VDG become available. Thereareinternal ROM
Alphanumerics (Normal and Inverse) and Semigraphics 4.
There is no user-definable external character generator avail-
able in a standard VZ and also the Semigraphic 6 mode is
not implemented due to hardware limitations. (Although I
understand that the LASER 200 had SG6 rather than SG4 im-
plemented as standard — but see previous section).

Let's digress for a while to describe how the on-chip cus-
tomised character generator located in ROM on the VDG
actually formats the 8 by 12 pixels to form each character.
Firstly, in text mode. Table 2 shows the actual character set
with corresponding codes resident in the VDG ROM. Figure
6 shows a typical character in Alphanumeric Mode (Inter-
nal). The spacing between characters across the line and be-
tween lines is set by the format held in the character
generator. A Non-ASCII type character code is used on the
VZ such that lower case (and control) ASCII characters are
not represented. The ‘lower case’ ASCII values are used to
signal ‘inverse’ characters by setting bit 6 high.

An Alphanumeric character in ‘normal’ mode is colour
selectable as either green or orange with a black background.
In ‘inverse’ mode, the character is black with the background

TABLE 2.

Alphanumeric and
Semigraphic 4 character set

- - - - - -
for the VZ-200 and VZ-300
- - - - - ® held in MC6847 on-chip ROM.
- - - - - == (Users — note errors in shape
- - - = - = table held in VZ ROM for inverse
' ' . ' . . J, X, 3 and 5).
.l] -l .I .I -l
ol o ol
- - - - - -
.I .l .I .I .I .I
[1 [[} 1 [
L L & L L L
- - - - - -
2T =59 €9 9 €9 9
s - -~ rF r.r
" B E B B =
BE R BEF CN M 0
_______________ /
(COLOURS)
) of 4

— 7000H (28672)

32

64

96
128
160
192
224
256
288
320
352
384
416
448
480

o 71E0 (29152)

being selectable from green or orange. Remember that the
Inverse mode of the MC6847 is set by bit 6 of the data value
contained in video RAM. (see also Figures 1 and 6).

An understanding of this involves looking at individual bits
within the bytes and also looking at how these bits can con-
trol and reset certain control lines on the VDG (as outlined
in Part 1).

In text mode there are 64 characters in each of the Nor-
mal (0-63) and Inverse (64-127) sets. This implies that a 6-bit
code is used to encode the character shape and that bit 6 de-
termines whether Normal or Inverse.

For example:—

b7 b6 b5 b4 b3 b2 b1 bO
0 0 1 0o o 1 0 1 Binary = 370 or ‘%' normal.
0 1 1 0 o0 1 0 1 Binary = 101D or ‘%’ inverse.

Note the way that bit 6 determines normal/inverse. Also
note that bit 7 doesnot change. The most significant bit(MSB)
is used to indicate text character to the on-chip ROM.

In summary, for the character source, a 6-bit ASCII code is
used to call the elemnent from the on-chip ROM, the seventh
bit indicates normal or inverse illumination, and the eighth
bit is held low to indicate Alphanumeric mode.

@ roeL oFF
2 s 1
R P O eoeL ur
1
4
INVERSE NORMAL

Black choracter

Black bockground
Green or orange background (selectable)

Green or orange choracter (selectable)
Figure 6. Format of Alphanumeric Mode — Intemnal on
MC6847. Each character Is 12 by 8 pixels and each screen

Is 32 by 16 characters. A 6-bit ASCII code specifies the
character from an on-chip ROM.

2 4.

701FH (28703) j

Figure 5. Screen addressing
for MODE (0) or lo-res

31 displays on VZ computers.
This mode corresponds to

63 Alphanumeric and

95 Semigraphic 4 on VDG and Is

127 32 by 16 characters in size.
Each character is byte-

159 ~ mapped as indicated.

191

223
255
287
319
351

383
415
447
479

N

71FFH (29183) _¢

b7 b6 b5 b4 b3 b2 b1 bo
6-bit ASCII

alpa
*AJS

In graphics mode the Semigraphics 4 mode of the VDG is
used. The 8 by 12 pixel character is divided into four ‘rec-
tangular’ quadrants of size 4 by 6. The quadrants are ‘psuedo-
addressable’ by selecting the correct area as shown on Figure
7.

In Semigraphics mode, a more comprehensive form of en-
coding is used. The character codes extend from 128 to 255,
implying that the MSB (or bit 7) is set to 1 (or high) to indi-
cate that a graphics character is encoded in the byte. The
graphicblock character contains 16 discrete patterns involv-
ing ‘switching’ on or off the four quadrants. The four
low-orderbits handle a quadrant a piece (refer Figure 7). Ad-
ditionally one-of-eight illumination colours is encoded in the
next three bits (bits 6 to 4).

For example:—

b7 b6 b5 b4 b3 b2 b1 bo

0o o 1 0 0 1 0 1 Binary = 217D or H cyan
0 1 1 0 0 1 0 1 Binary = 145D or E yeliow
Ox c2 C1 | co COLOUR
¥ o | x | x| x BLACK
(o} [o] o GREEN
s o [o] YELLOW
(o] o BLUE
€ 0 RED
o] (o] BUFF
[} CYAN
‘L 1 1 O | MAGENTA
4 ORANGE

[1 Je2] cr]co]as]az2] a1]eo]

BYTE ORGANISATION
Figure 7. Format of Semigraphic 4 Mode on MCggs 7. Each
character I8 12 by 8 pixels but elements or quadrants can

be Individually llluminated giving a screen resolution of 64
by 32 elements In up to eight colours.

October 1986 — Australian Electronics Monthly — 111

Figure 8. Screen Addressing
for MODE (1) or hi-res

displays on the VZ computers. 0.0 »

This mode corresponds to

.Colour Graphics 2 on the VDG

and is 128 by 64 elements in

size. Each element is mapped

with two bits. 0,15 »
0.31 »
0,47 »
0,63 »

77EOH (30688)

In summary, for Semigraphics mode it can be seen that
each of the four least significant bits controls one of the quad-
rants, whilst the next three bits determine the colour of the
illumination. The most significant bit is set high to indicate
a graphics block is encoded.

b7 b6 b5 b4 b3 b2 b1 b0
colour G3 G2 G1 GO

graphic
‘A/S

In this mode, although the screen is formatted into 32 by
16 graphics blocks, in fact the quadrant resolution is actual-
ly 64 by 32 and with all of the eight colours available. This
ma}él be thought of as an intermediate resolution display
mode.

Thus it can be seen that Alphanumerics in either Normal
or Inverse style and Semigraphics blocks of up to eight
colours can be individually set on the lo-res screen by byte
mapping. Different forms of encoding the necessary infor-
mationare used in each case. These features combine to make
MODE(0) quite a powerful display despite its lack of reso-
lution.

Hi-res/Graphics/Mode(l)

In hi-res or MODE(1), the screen has 128 by 64 elements
individually addressable. This corresponds to 8192 elements
and with only 2K of video RAM available, then some sort
of trade-off in features over lo-res must ensue. In hi-res, each
element is 2 by 3 pixels in size and is (noticeably) rectangu-
lar in shape. Video RAM addressing extends from 7000H
(28672D) to 71FFH (30719D) — 2048 bytes as shown in Figure
8

This mode corresponds to Colour Graphics Two (CG2) on
the VDG chip. Each byte addresses four consecutive elements
across the screen. Each element may be one-of-four colours
(selected from either of the two colour sets). Note the trade-
off in colours and the different way in which elements are
addressed on the screen — such that MODE(0) and MODE(1)
screens cannot be mixed.

There are a couple of ways in whicheach element may be
illuminated.

The simplest (and slowest) way is by using the BASIC com-
mands of SET and RESET. These commands alter two bits
of the appropriate byte in the video RAM area. The process-
ing is very slow because of this limitation and the fact that

[7000H (28672)

63,0 701FH (28703)
" 41270
< 127,15
< 127,31
< 127,47
< 127,63
1 Y
63,63 77FFH (30719)

it is done through the BASIC interpreter. Listing 1 provides
a simple illustration of this method. The program fills the
entire screen with hi-res elements according to the COLOR
command. The use of integer index variables speeds up the
program a little.

10 *388SNAIL GRAPHICE DEMOSSE
20 *sas HI-RES 828

30 *388 VERSION 1.2 sae

40 *8318 R.B.K. 22/5/86 118

50 ‘888 EXECUTION TIME 43.7 SECS.
100 'SET TO HI-RES

120 MODE(1)

130 COLOR 3,0

140 SOUND 10,1

200 FOR V=0 TO 63

210 FOR HX=0 TO 127

220 SET (HX, V%)

230 NEXT H%

240 NEXT VX

250 SOUND 10,1

LISTING 1

260 STOP
270 END

10 *$83ENAIL GRAPHICS DEMOSZS
20 "ss3 HI-RES s
30 ‘sus VERSION 2.3 sas
40 ‘388 R.B.K. 22/5/86 818
S0 *s3s EXECUTION TIME 8.3 SECS.
100 *BET TO HI-RES

120 MODE (1)

130 COLOR ,0

140 VX=170:80UND 10,1

200 FOR 1%=28672 TO 30719
210 POKE I%,V%

220 NEXT I%

250 BOUND 10, 1

260 8TOP

270 END

LISTING 2

10 *83SNEAR-LIGHT-BPEED GRAPHICS DEMOsss
20 "sss HI-RES 88
30 *sss VERSION 1.2 sss
40 °sss R.B.K. 22/3/86 333
SO °*sst EXECUTION TIME 0.3 SBECS.

LISTING 3

100 *838LOAD BLOCK MOVE MACHINE CODE.$ss
110 FOR I1X=-28687 TO -28674

120 READ AX1 POKE I%,AX

130 NEXT

140 DATA 33,0,112,17,1,112,1,255,7,54,170,237, 176,201
200 *$2SINITIALIZE UBR() TO ADDRESS BFF1H OR -286870.18 8
210 POKE 30862,2411 POKE 30863143

300 "8$88BET TO HI-RES. 88

310 MODE (1)

320 COLOR ,0

330 SOUND 10,1

340 X~UPR(O)

350 6OUND 10,11 BOUND 0,9

360 COLOR ,1

370 BOUND 10,13 BOUND 0,9

380 STOP

390 END

412 — Australian Electronics Monthly —.October 1986

23

10 "SSEEEBEETLEBLLLLBLELBELES

LISTING 4

20 838 2000 VZ SCREENS s33
30 *ss3 VERSION 1.2 L2 2
40 "s388 R.B.K. 18/5/86 11%
SO 8883888883 33883338833838388
60 *

100 °"S¥SFIND TOP OF MEMORY.

110 M1=PEEK (30898):L1=PEEK(30897) 1" $33sPRESERVE TOM POINTERS.
120 TH=M13256+L1~20 1° $33RESERVE TOP 20 BYTES.
130 MS=INT(TM/2356) :LS=TH-MS$256
140 POKE 30898,MS:POKE 30897,LS

200 *#83SET UP LOADING OF USR() ROUTINE.
210 TH=THM+1 1* 83INEXT ADDR IN RESERVED MEM.
220 MS=INT(TM/256) 1LS=TH-NS8256

230 POKE 30863,MS:1POKE 30862,LS

240 AD=TM+10 1°888ADDR. FOR CHARACTER BYTE.
IF TM>32767 THEN THM=TM-65536 1°$88CONVERT TO SIGNED INTEGER.
IF AD>32767 THEN AD=AD-65536

270 *

*#38LOAD MACHINE CODE.

310 FOR ID=TM TO TH+13

READ VL1POKE 1D, VL

330 NEXT

340 °

*88332-80 BLOCK MOVE SUBROUTINE.
410 DATA 33,0,112 1°LD HL, 7000H
420 DATA 17,1,112 1°LD DE, 7001H
430 DATA 1,255,7 1°LD BC, O7FFH
440 DATA 54,85 $°LD (HL),SSH

(#28672D START VIDEO RAM)
(428673D NEXT OR DEST.)
(#2047D SI12E OF VIDEO RAM)
(#8SD YELLOW OR CHAR.“U")

450 DATA 237,176 1 *LDIR (BLOCK MOVE INSTRUCTION)
460 DATA 201 1’RET

470 *

S00 "¥3XINITIALIZE DELAYS - CONTROL SPEED OF EXECUTION BY D.
510 T=0 1*388TONE O IS REST. RANGE IS 0 TO 31
520 D=4 1" 888DURATION 9 IS LONG. RANGE IS 1 TO %

530 P=30744
540 POKE P,0
550 *

600 *$83SET UP DEMO LOOP.
610 FOR 1D=0 TO 255

1° 338ADDR. FOR INVERSE CONTROL.
1° 888SET UP SCREEN.

620 POKE AD, 1D 1* 283SET CHARACTER BYTE.
630 *333SCREEN MESSAGE.

640 HODE (0) +* ¥34SET 2A/G LO.

420 POKE P,0 17 T83SET INV LO.

660 PRINT234,% CHAR = “;IDi1SOUND T,D

670 *3¥3LO-RES SCREENS.

680 *¥3ILO-RES GREEN CHARACTER ON BLACK BACKGROUND.
690 X=USR(0) 1COLOR,01SOUND T,D:®883SET CSS LO.

700 *$88LO-RES ORANGE CHARACTER ON BLACK BACKGROUND.
710 COLOR, 1:1SOUND T,D 1*833SET CSS HI.

720 POKE P,1 1*XRISET INV HI.

730 *333LO-RES BLACK CHARACTER ON GREEN BACKGROUND.
740 X=USR(0)1COLOR,0:SOUND T,D:’388SET CSS LO.

730 *283LO-RES BLACK CHARACTER ON ORANGE BACKGROUND.
760 COLOR, 1:1SOUND T,D 1°$83SET CSS HI.

770 *333HI-RES SCREENS.

780 MODE (1) :*$8ISET 3A/G HI.
790 POKE P,0 1°2EISET INV LO.

800 '%8BHI-RES COLOR SET O - GREEN SURROUND.

810 X=USR(0)1COLOR, 03 SOUND T,D:’8X8SET CSS LO.

820 *$83HI-RES COLOR SET 1 - BUFF SURROUND.

830 COLOR,11SOUND T,D 1’ $3ESET CSS HI.

840 POKE P,1 1’ 883SET INV HI.

850 *¥3IHI-RES COLOR SET O.

850 X=USR(0):COLOR,01SOUND T,D:’388SET CSS LO.

870 '¥3EHI-RES COLOR SET 1.

880 COLOR,1:SOUND T,D 1° $83SET CSS HI.

890 *SZERESET CONTROLS.

900 POKE P,01COLOR,01CLS

910 NEXT

920 *

930 *$3sRESET TOM POINTERS.
940 POKE 30898,M1:1POKE 30897,L1
930 STOPIEND

A quicker way is to POKE values into each byte, thereby
setting four elements at a time. Listing 2 demonstrates this
technique. This program also fills theentire hi-res screen with |
elements whose colours are determined by the variables V%. |

The quickest way is to use a machine language program
to load appropriate values into the video RAM. This tech-
nique is a very rapid way to fill the screen. Listing 3 is an
example of this method. This program POKEs machine code
into hi-memory. The subroutine uses the very efficient Z80
Block Move command to fill the screen according to the value
stored at address -28677D. It is fast!

Both of the last two methods require that an understand-
ing of the value to enter into RAM is known. This requires
a knowledge of how each byte is organised in CG2 mode.

As mentioned previously, each byte controls four elements
which can be selected from four colours. Bits are treated in
pairs (dibits!) with each pair corresponding to an element.
Each dibit can have a value of 00B to 11B to indicate colour.
This is set out on Table 3.)

Four example, suppose we want an entirely BLUE screen.
Then POKE (128 +32 + 8 + 2) or 170D into the appropriate area

TABLE 3:
CONFIGURATION OF BYTES IN MODE (1).

3 2 1 0 Element #

00 00 00 00 Bin. = four GREEN/BUFF elements.
(] 0 0 0 Dec. = 0D
01 01 01 .01 Bin. « four YELLOWACYAN elements.
64 16 4 1 Dec. = 850

10 10 10 Bin. = four BLUE/MAGENTA elerments.

128 32 8 2 Dec. = 1700

11 11 11 11 Bin. = four RED/IORANGE elements.
182 48 12 3 Dec. = 2550

The decimal numbers corresponding to each element position AND colour
provide the value that needs to be POKE'd or loaded.

of the screen. If, however, a striped screen consisting of RED-
GREEN-BLUE-YELLOW vertical bands is required, then
POKE (192 +0+8+1) or 201D.

Although only four colours are available, there are two
colour sets available. These are called by the COLOR
command.

COLOR, 0 sets the background colour to green and the
‘strong’ colours of yellow, blue and red are available.

COLOR, 1 sets the background to buff and the ‘pastelle’
colours of cyan, magenta and orange are available.

To think back to the RESET command mentioned before,
it should be apparent that this command simply resets each
dibit or element back to 00B, or the background colour.

Finale

Well there we have it! For those who have perservered thus
far I have included Listing 4 which is entitled ‘2000 VZ
Screens’. It is about as exciting as watching a Late Night
Movie — and takes about as long to run! Actually it illustrates
all of the features discussed in this article. For those who wish
to sit-it-out — watch those control lines operate!

AEm 12t

P.

A ldemdly ..

A WRINT P.ll.u;.., B s
4o ,':')‘;n] &
las

q4s CLEAR SO

REFERENCE LISTING OF VZ-200/300 MAGAZINE
ARTICLES
Since its introduction in early 1983, over one hundred articles on
the VZ-200 and 300 have appeared in magazines. some articles review
the hardware and others describe peripherals, some excellent games
have been published and a very useful set of utility routines has

emerged.
This bibliography for the VZ computer is a must for the serious
VZ User. -
UTILITIES
Oct. 83 APC 52,4 BASIC program conversion. (Surya) (2)
Nov. 83 APC 57,9 Program conversion Pt. 2 (Surya) (2)
Nov. 83 APC. 89-95 BASIC converter chart. (Surya) (7)
Feb. 84 APC 1401 Program conversion Pt. 2 (Surya) (2)
Mar. 84 APC 423 Program conversion — Apple II (Surya) (2)
Apr. 84 APC 71-2 Program conversion — TRS 80/System
80 (Surya) (1)
May 84 APC 756 Program conversion — Atari (Surya) (2)
Jun. 84 APC 67 Program conversion — Sinclair (Surya) (1)
Jul. 84 APC 129-30 Program conversion — BBC (Surya) (2)
Mar. 84 ETI 63 More functions for the VZ-200. (Olney) (1)
Apr. 85 ETI 117 Notes and errata for Olney. (-)
Jul. 84 M80 34 VZED — three new functions. (1)
Aug. ‘"84 M80 2 VZ-200 output latch. (1)
Aug. 84 MB80 9, 15, 16 Memory peek VZED. (Carson) (1)
Aug. 84 MB80 3-4 Microsoft ROM BASIC Level I bug. (1)
Apr. 85 APC 97 VZ-200 bug. (Tritscher) =)
Aug. 85 APC 31 VZ bug. (Tritscher) (=)
Aug. 84 APC 94 VZ-200 moving message and trace.
(Batterson) (1)
Nov. 84 APC 125 Trace function. (Breffit) (=)
Nov. 84 APC 125 VZ-200 correction. (Kelly) (<)
Oct. 84 ETI 1357 Extending VZ-200 BASIC. (Olney) (3)
Noy. 84 APC 125-6 TRON/TROFF function for VZ-200.
(Thompson) (1)
Nov. 84 APC 208-12 MON-200 machine code monitor.
(Stamboulidas) (5)
Nov. 84 PCG 55-56 Lprinter. (Quinn) (2)

'October 1986 — Australlan Electronics Monthly — 113

[con}. on 2 .e_za

— from page 114
AEM Australian Electronics ETI Electronics Today
Monthly International
APC Australian Personal MB80 Micro-80
Computer MC Micro Choice (UK)
BYC Bumper Book of Programs by PCG Personal Computer Games
YC PCN Personal Computer News
CC Creative Computing (US) (UK)
CFG Computer Fun and Games PE Practical Electronics (UK)
CT Computing Today (UK) ‘WM Which Micro (UK)

CHC Choice YC Your Computer
EA Electronics Australia ;

The numbers in brackets are the number of sheets in each article.
A dash (<) indicates that the article is on the same sheet as the item
above.

If Users wish to obtain copies of the articles referred to in this
bibliography they may —

i) contact me for copies...or...

ii) buy back copies of the magazine from the distributor., . or. ..
iii) borrow from your local library.

Compiled by —
Bob Kitch, 7 Eurella St., KENMORE, QLD 4068. Ph. (07)378 3745

PLEASE ADVISE OF ANY ADDITIONAL ARTICLES... or...
CHANGES, ALTERATIONS OR BUGS IN LISTINGS to assist other
users.

October 1986 — Australlan Electronics Monthly ~ 121

Nov. 84 PCG
Feb. 85 APC
Feb. 85 APC
Apr. 85 PCG
Apr. 85 APC
Apr. 85 APC
Apr. 85 APC
Jul. 85 APC
May 85 APC
May 85 ETI
May 85 APC
Aug. 85 APC
Aug. 85 APC
Sep. 85 APC
Oct. 85 APC
Oct. 85 APC
Nov. 85 APC
Nov. 85 ETI
Jan. 86 APC
Feb. 86 APC
Mar. 86 APC
Mar. 86 YC
Jun. 86 APC
GAMES

Dec. 83 APC
Jan. 84 YC
Apr. 84 APC
Jul. 84 APC
Jul. 84 Ms0
Jul. 84 Maso
Aug. 84 Maso
Aug. 84 Mso
Oct. 84 PCG
Nov. 84 PCG
Jan 85 PCG
— 85 BYC
Mar 86 CFG
- 85 BYC
Jan. 85 APC
Jan. 85 YC
Jan. 85 PCG
Mar. 85 YC
Apr. 85 YC
Apr. 85 PCG
May 85 YC
May/Jun 85 PCG
Jun. 85 YC
Jan. 86 YC
Jul. 85 YC
Aug. 85 YC
Oct. 85 PCG
Oct. 85 YC!
Mar. 86 APC
May 86 ETI
BUSINESS

Aug. 84 APC
Oct. 84 APC
Oct. 85 APC
Oct. 84 APC
Dec. 84 APC
May 85 APC
Jul. 85 APC
PERIPHERALS
Feb. 84 EA
Aug. 84 EA
Aug. 84 PCG
Oct. 84 APC
Dec. 84 APC
Oct. 85 YC
Nov. 84 ETI
Dec. 84 ETI
Aug. 85 ETI
Jun. 86 EA

suppl.
171
20

62-64
19

103

176
52-3
99-101
110
130
130-3
145
218
147
189
94-5

83,5
127
chart
103-5
209

161-3
65

178-80
174-8

7,20, 21
9, 16
9, 16, 17
55-7

82

172-7
214
82-3

126-30

162-3
164-6

131-2
65

83
214
36

140
106-12

93-7

72-8
1086

VZ-200 reverse video. (1)
BASIC understanding (Hobson) (1)
VZ-200 into puberty — Olney’s

extended BASIC. (1)
Find. (Stamboulidas) (3)
Use of RND in dice and card games.

(Holland) (1)
VZ variable definition. (Stamboulidas) (1)
Variable GO TO on VZ. (Olsen) (1)
Correction to VZ variable GO TO (-)
Lusco support for VZ-200. (Young) (1)
VZ-200 hardware interrupt. (Olney) (3)
Background VZ. (Williams) (1)
VZ-200 instant colour. (Willows) (=)
Reversed REM. (Quinn) (1)
Real-time clock. (Griffin) (1)
APC benchmark BASIC programs. (1)
VZ deletions. (Quinn) (1)

VZ EDITOR/ASSEMBLER tips. (Lam) (1)
Olney's Level 11 BASIC for VZ-300/300.

(Rowe) (2)
VZ user graphics. (1)
Machine language calls. (1)
APC BASIC converter chart 1986. (8)
VZ-200 cassette inlays. (Dutfield) (3)
VZ pause. (1)
Missile Command. (Whitwell) (2)
Graphic Sine Waves for VZ-200.

(Nickasen) (1)
Moon Lander. (Alley) (2)
Blockout. (Pritchard) (3)
Battleships. (Carson) (1)
Junior Maths. (Carson) (2)
Contest Log VZED. (Carson) (1)
Dog Race VZED. (Carson) (1)
High Resolution Graphics Plotting.

(Thomson) (3)
Tips for ‘Ladder Challenge', ‘Panik’

and ‘Asteroids’. (1)
POKEs to ‘Ghost Hunter'. =)
Gold Simulation. (McCleary) (2)
Gold Simulation. (McCleary) =)
Knight's Cross. (Lucas) (1)
Sketcher. (Leon) (3)
Punch. (Rowe) (2)
Space Station Defender. (Shultz) (5)
Decoy. (Rowe) (2)
Painter. (Daniel) (1)
Roadrace. (Thompson) (3)
Number Sequence. (Thompson) (1)
Sketchpad. (Thompson) (5)
Morse Tutor program. (Heath) (1)
Morse Tutor — again. (Heath) (2)
Electric Tunnel. (Daniel) (1)
Number Slide. (Daniel) (1)
Cube. (McMullan) (8)
Yahtzee. (Thompson) 3)
VZ Frog. (Alley) (1)
Balloon Safari, The Drop and Flatten.

(Sheppard) (1)

Database VZ-200. (Barker) (6)
WP for VZ-200. (McQuillan) (-)
Comment on Barker’'s and Quinn's DB.

(Lukes) <)
Minicalc Spreadsheet. (Stamboulidas) (5)
Correction to Minicalc. (1)
Micro Type (WP). (Browell) (2)
Database. (Quinn) (2)
Real-world interface. (1)
Improved graphics on VZ-200.

(Dimond) ; (1)
1/0 card for VZ-200. (ad) (1)
Serial help request. (Pope) (1)
Add-ons for VZ-200. (Bleckendorf) (-)
VZ-200/300 Modem. (ad) (=)
A ‘Glass-Teletype’ using the

VZ-200 Pt [m
A ‘Glass-Teletype’ using the

VZ-200 Pt II ()
VZ-200 terminal. (7)

VZ serial terminal. (ad DSE kit K6317) (-)

Feb.

Mar.
Sep.

86

86

ETI

ETI

72-4

48

86 AEM 89-92

Modifying VZ-200 16K memory
expansion. (Olney) (3)

Talking VZ-200. (Bennets) (1)

VZ-200/300 Screen-handling. (Kitch) (4)

COMMERCIAL SOFTWARE REVIEWS

Mar.
Aug.
Oct.

Nov.
Jan.

Feb.
Mar.
Apr.
Apr.

Oct.
Nov.

84
84

84

84
85
85
85
85
85

85
85

APC

pcg
PCG

PCG
PCG
PCG
PCG
PCG

ETI

PCG
PCG

190-1
46-47

90-91

90-98
65

76
76-77
94-99
103

689
70-1

HARDWARE REVIEWS

Apr.
Apr.
May
Jun.
Jun.

Jun.
Aug.
Jul.

Jul.

Jul.
Sep.
Aug.
Sep.
Oct.
Oct.
Oct.
Dec.
Nov.
Nov.
Feb.
Spring
Jun.
Aug.

Oct.

Nowv.
Nov.
Dec.
Jul.

Aug.
Dec/]an

83
83

886

APC
CcC
cC
EA

ETI
YC
PCG
ETI

EA

PCN
WM
YC
cC
APC
WM
CT
CT
CT
WM
cc
MC
EA
EA

PCG
PCG
EA
CHC
ETI

EA
PCG

58-66
38-43
26-30
137
30

6

12
32-7

78-80

28-31
102-6
22-7

11-15

GENERAL PROGRAMMING

Jan.
Mar.
Apr.
May
Jun.
Jul.
Aug.
Sep.
Jan.
Feb.

Mar.
Apr.
Oct.

Jun.
Jun.

Oct.

114 — Australian Electronics Monthly — October 1986

29@2_

PE
APC
APC
APC
APC
APC
APC
APC
APC
APC

APC
APC
APC

APC
APC

YC

3/1-3/5
73-85
57-84
89-98
53-60
61-84
110-116
145-151
122-124
103-109

98-109
79-87
82

170-171
171-173

107-8

Review of DSE ‘Matchbox’, ‘Biorythms’,

‘Circuit’, and ‘Poker’. (Davies) (2)
Review of DSE ‘Panik’ and ‘Ladder
“"Challenge’. (1)

Review of DSE ‘knights and Dragons’,
‘Ghost Hunter’, ‘Othello’, and

‘Invaders’. (2)
Review of LYSCO ‘Cub Scout® and DSE

‘Dracula’s Castle’. (1)
Review of DSE ‘Air Traffic Controller’

and ‘Tennis’. (1)
Review of DSE ‘Defence Penetrator’

and ‘Star Blaster'. (1)
Review of DSE ‘Planet Patrol’ and

‘Learjet’. (1)
Review of DSE 'Asteroids’, ‘Super

Snake’ and ‘Lunar Lander’. (1)
Logbook and Morse on VZ-200. (1)
Review of DSE ‘Duel’. (1)
Review of DSE ‘Attack of the Killer

Tomatoes'. (1)
VZ-200. (Hartnell) (5)
Review of VZ-200 (3)
Video Technology VZ-200 PC. (Ah1) (3)
New low-cost computer — VZ-200. (1)
Dick Smith colour computer. (1)
DSE VZ-200. (=)
VZ-200.)
DSE'’s personal colour computer.

(Harrison) (3)
The VZ-200: colour, graphics and sound.

(Vernon) (4)
Timing the Laser’s phazer. (Stokes) (1)
Laser. (=)
Cash and Carry Computers. (Bell) 9)
Review of VZ-200 and PP40 (1)
VZ-200. (1)
Texet TX8000. (1)
The Laser 200. (-)
Laser 200. (<)
A look at the Laser. (Green) (4)
The Laser — a shot in the dark. (3)
Laser PP40 Printer/Plotter. (2)
Laser 200. (Green) (3)

Buying your first computer. (Vernon) (8)
An important role for small computers.

(Williams) (4)
Home micro supertest. Pt. 3

(Bollington) (5)
Home micro supertest. Pt. 4

(Bollington) (4)
VZ-200 as a WP (DSE E&F tape WP).

(Williams) (2)
Review of video games consoles. (4)
Dick Smith’s new VZ-300. (Rowe) (5)
WP on the new VZ-300. (Williams) (5)
How to buy a micro — VZ-300

compared. (4)
PE Micro-file #3 — Z80. (Coles (5)
Teach yourself assembler Pt. 1 (Overaa) (6)
(8080, Z80, 8502) Pt. 2 (Overaa) (5)
(8080, Z80, 6502) Pt. 3 (Overaa) (5)
(8080, Z80, 6502) Pt. 4 (Overaa) (5)
(8080, Z80, 6502) Pt. 5 (Overaa) (3)
(8080, Z80, 6502) Pt. 6 (Overaa) (5)
(8080, 280, 6502) Pt. 7 (Overaa) (4)
Sort at input. (Ithell) (1)
The basic art — algorithms, siructures

(Liardet) (4)

Pick a number — arithmetic. (Ljardet) (5)
It takes all sorts — sorting. (Liardet) (5)
The Art of Programming — Prggress.

(Hjaltson) ()
Comment on binary search. (Lamich) (1)
Comment on disbribution sort,

(Riordon) (1)
Sorting out the sorts. (Jankowgki) (1)

— to page 421

[.C_on‘: o § opJJ

Home brew label
maker

A program for programmers who
like beer. By altering the strings in
lines 190-240, the program can
be customised for any user (and,
indeed, for other labels besides
home brew). Once you have set
up Yyour label, you need to
remember to change the sfring
BOS in line 240 to correspond
with your date of bottling. Make
sure that all of the strings have
the same length to ensure a neat
label.

The program should be easy tc
translate for other computers and
printers. Line 180 activates double
width print on my Olympia
printer; line 380 deactivates it.

Adrian Gallagher
Bendigo, Vic

VZ200

100 REM © HOME BREW LABEL MAXER

110 REM & FOR VZ -200/300

120 REM © PRINTER: OLY MPIA NP
130 REM ® (EPSON COMPATIBLE)
140 REM o BY A. BALLAGHER
150 REM & 14/3/86

160" REM e ALTER STRINGS TO SUIT
170 REM eccccccccscscccccscssasasce

180 LPRINT CHR®8(27);~1"jCHRS(32)11 SELEC

T DOUBLE WIDTH PRINT

190 Te="escccccccccccce eecccccssssscce
- - ADE 'S -

220 Ms="o MEAN & - - MEAM & -

230 Bs="e B I T T ER ¢ e Bl TTERS

240 POS="e B.17-3-86 o e B.17-3-B¢
-

230 CLS:INPUT “MHOW MANY DOUBLE LABELS"iN
260 FOR 1=1 TO N

270 LPRINT Ts

280 LPRINT S$:LPRINT Ss

290 LPRINT As

300 LPRINT M

310 LPRINT Bs

320 LPRINT S8:LPRINT Sse

330 LPRINT BOS

340 LPRINT S

330 LPRINT Ts

360 LPRINTILPRINTILPRINT

370 NEXT 1

380 LPRINT CHR®8(27)3"1~3;CHRS(0);: DESELEC
T DOUBLE WIDTH PRINT

390 END

ETI October 1986 — 47

Many hams have purchased the VZ-
200 computer marketed by Dick Smith
Electronics and the more recent VZ-
300 model. Some have also taken ad-
vantage of the various projects and kits
that allow the computer to be utilised
for RTTY and CW.

Being the son of an amateur, |
couldn’t help but wonder, "why leave it
there?’. | also couldn’t help but notice
the time and trouble involved in keep-
ing a log. Every time a contact is made
and the callsign rang a bell, valuable
time was lost flipping through log
pages to track down who, where and
when.

Problems were also observed during
contests when, with each contact you
make, you have to either mentally or
physically flip through the log to see if
the station has been worked before
and, in the case of some contests, to
see if the required time between dupli-
cate contacts has elapsed.

So, if you have a computer handy in
the shack, why not also use it to relieve
the everyday drudgery of log keeping?

The program listed here is short (as
log programs go) and written in BASIC
so even the most cautious user can
type it in without much trouble. It re-

By Alex Johnson Jr.

quires 24K of memory, an 80-column
printer and a cassette recorder. The
program is written specifically for the
Dick Smith GP-100 dot matrix printer,
but should work with most printers
without any worries,

The program includes many ‘‘se-
crets, tricks and short-cuts’’ that | have
discovered after working with the VZ
for some time. These are used through-
out the program to save memory, SO
please type the program in exactly as
indicated in the listing (although you
can leave out the spaces outside PRIN-
T/INPUT statements) as the memory is
balanced and juggled between string
and memory needs.

To save you some counting, long
stretches of spaces inside PRINT state-
ments have been printed as (x spaces).
When you encounter this, just type the
number of spaces indicated by ‘x’.
When you encounter the term (rev),
this indicates reversed text as used in
program listing on the VZ-200/300.
The printer used to list the program
does not reproduce reversed text very
well.

| have personally checked the final
printout and provided the editor with
corrections and modifications needed

to ensure that the program works ef-
fectively (and your editor has taken
great care to correct the detected er-
rors for a bug-free printout — ED).

TRICKS & SECRETS

Some of the memory-saving tricks
used in the program include:
1. Beep each ume a key is pressed .

POKE 30862,90- POKE 30863,52
X =USR(0)

2. Small quick beep that can't be
switched off (see ‘beep off’) . . .

POKE 28761,1: POKE 28671,32

The VZ technical manual discusses
the Peizo on page 7. Any address from
26624 to 28671 decimal (6800 to
6FFF hex) will result in a beep when
POKEd with these values.

Beep on: POKE 30779,0
Beep off: POKE 30779.1
3. Memory left . . .
POKE 30862,212: POKE 30863,39
String memory . .
PRINT USR(X$)
RAM memory . . .
PRINT USR(X)

4. Sound abbreviations: the use of
a semi-colon between notes and du:a-
tions . . .

SOUND 16,2;21,7;15,3,22,8

38 — AMATEUR RADIO ACTION Vol. 9 No. 6

7 oct 1956 p3s—4a,

5. THEN, GOSUB and GOTO on IF .
. THEN . . ELSE statements: THEN can
be replaced by a comma; GOTO can be
left out; just the line number needs to
be typed in after the comma. If a GO-
SUB is needed, then the comma can be
left off . . .
IF A:=B,100; IF A=B, PRINT ""HI"
IF A=B GOSUB 100
6. REM can be replaced with an in-
verted comma and NEXT may be used
with no variable . . .
100 " THIS IS FUN
200 FOR A=1 to X: NEXT
There are many more “‘tricks’" that |
did not use in the program. If you have
others or want to know the rest, write
to me at 19 Banksia St, O'Connor,
ACT, 2601.

PROGRAM DESCRIPTION

The program is broken into subrou-
tnes and components that can easily
be used to help iron out any bugs. The
followingis a brief summary of the sub-
routines and components.

Lines 10-90: In Line 10 the screen
background color is set and addresses
30862 and 30863 decimal (788E and
788F hex) are POKEd with the address-
es of the beep routine in ROM, 13392
decimal (3450 hex). Starting entry
number is entered and variables are DI-
Mensioned and set. T% in Line 40 con-
trols how many entries can be kept in
RAM at the one tume. If you have more
than 28K of RAM you can increase this.
See Lines 1020 to 1080.

Lines 90-176: The screen is set
up. Note the number of periods or dots
in these lines, as they are crucial in the
log PRINTing process.

Line 180: Commands are entered.
This 1s what is referred to as the com-
mand line or command entry point.

Lines 190-310: The input at the
command lne 1s checked for a vald
input. If the input 1s valid, the program
goes to the appropriate subroutine;
otherwise 1t returns to Line 170.

Lines 320-340: The cursor is
moved to the correct position to fill in
the entries. Before the command|line, a
chick is produced by toggling the Peizo
high then low. This is done by POKEing
decimal 28671 (6FFF hex), the byte be-
fore the start of screen RAM. See pre-
VvIious text.

Lines 350-360: The entries are
checked for length and cut down to the

correct s1ze. This i1s necessary as the
PRINTing 1s dictated by entry length, as
can be seen from Lines 430 and 860-
870. This method is used to save
memory.

Lines 368-420: Previous entries
are scanned through from the latest to
the first — i.e. backwards. If a previous
contact has been made, the most re-
cent contact is displayed.

Lines 430-435: If the continuous
PRINTIng mode is on, this subroutine
is used to make the hard copy. The
importance of length of entries can be
seen here as entries are simply PRINT-
ed one after the other without TABs.

Lines 440-500: This is the 'FIND’
subroutine where callsigns are com-
pared with the one specified in Line
140. If a match is found, you can con-
tinue the log or execute a further
search.

Lines 510-540: This is the 'DE-
LETE" subroutine where callsigns are
compared with the one specified in Line
140. If a match 1s found, you can con-
tinue the log or execute a further
search.

Lines 550-630: The 'SORT’ rou-
tine allows the user to sort in two
fields, by entry or callsign. If callsign is
selected, all callsigns in string RAM are
compared and sorted into alphabetical
orderin Lines 570-630. If entry number
is selected, the data in string RAM is
sorted into numerical order of entry
number. Both formats are completed
on three common nested loops. The
decision as to which field is to be sort-
ed is made in Lines 590 and 600.

Line 640: 'FILES FULL" subroutine.
This is used when the maximum al-
lowable string RAM is reached. It is
marked by an indicator in the top left
corner of the screen and a series of
beeps. The beeps in Line 640 are pro-
duced from the one SOUND statement
with semi-colons separating each note-
/duration pair. The files are considered
full when the entry number is greater
than T% — see Line 160. It is then
necessary to SAVE the entries.

Lines 650-660: Continuous
PRINTing mode is toggled on and off.
When 2% =1, it is on. When 2% =0,
it's off. See Lines 175 and 420-435.

Lines 670-720: Entries are dis-
played on the screen. While the entries
are being displayed, pressing ‘P" or the
space bar will 'PAUSE’ the screen,

while ‘'S" will stop the list and return
you to the main entry page.

Lines 730-870: Hard copy of the
entries is made in this subroutine. The
entries are PRINTed one after the other
in Lines 860 and 870 and are not
TABbed, as in Lines 430-435. Unlike
continuous print, the pages are num-
bered and headed in columns. Entries
are printed in the current (sorted) order
— i.e. if a SORT by callsign has been
carried out, the log will be printed in
callsign order; if not, it will be printed in
entry order. Stop and pause are similar
to Lines 700-710.

Lines 880-920: Entries are
SAVEd to tape in this subroutine in the
current (sorted) order.

Lines 930-980: Previously sAVEd
entries are LOADed from tape in this
subroutine.

Lines 990-1000: The key beep is
toggled on and off in this subroutine by
PEEKing decimal 30779 (7836 hex),
checking its value and adjusting Y%.
When 30779 has a value of O and
Y% =1, the beep is off. If 30779 has a
value of 1and Y% -0, the beepis on. If
you are wondering why | used Y% to
switch the indicator in Line 136 and
didn’t simply PEEK 30779, itisn't be-
cause | didn’t think of it but rather be-
cause, for some reason or other, the
value in 30779 is intermittently mis-
read and therefore unreliable alone.

Lines 1020-1080: Memory left
subroutine. This is useful if you have a
computer with more than the basic
24K. By adjusting T% in Line 40, and
keeping an eye on this subroutine, you
can have more entries in string RAM at
the one time. The amount of memory 1s
calculated by calling a routine at deci-
mal 10196 (2704 hex). When USR(X)
is used, the amount of free RAM in
bytes is derived. USR(X$) derives the
amount of string RAM in bytes. Line
170 is used to reset decimal 30862
and 30863 to the beep routine. See
Line 10.

USING THE PROGRAM

Once the program is typed in and
appears to be error free, SAVE it be-
fore you attempt to RUN it as it may
contain an error that causes the pro-
gram to crash and be lost. Once 1t is
SAVEd, it is then safe to start as the
SAVEd copy can be loaded and edited
if the program crashes.

AMATEUR RADIO ACTION Vol 9No 6 — 39

Once you type RUN and press RE-
TURN, the first screen will ask you to
enter the starting entry number. If this
1s the first time you are using the pro-
gram, it will be "1, If you are going to
LOAD previously saved entries, just
press RETURN with no number.

There will be a slight pause as the
computer works itself out, then the
main entry screen will appear with a
beep. The cursor will be on the bottom
of the screen — commands are en-
tered from this point and nowhere else.
If you wish to complete an entry, press
RETURN. The cursor will then move up
to the date — type it in the DDMMYY
format asindicated (1st October, 1986
would be ‘011086°). Remember to put
a zero in front of the number if it is a
single digit (i.e. 4this 04, Marchis 03).

An important point to note is not to
go beyond the dotted markers for each
parameter. If you do, the computer will
automatically remove the extra charac-
ters but your screen will end up in rath-
er a mess. If the screen does happen to
get into a mess, just use the CLEAN
command to reprint it.

When you have the date typed in,
press RETURN and the cursor will
move down to callsign. Type this in,
not forgetting to press RETURN orce
you have finished. The cursor will then
move down to the time. As with date,
time should be entered in the HHMM
format — i.e. 7 PM EST would be en-
tered as 1900 (or 1100 UTC).

Be careful not to use semi-colons or
commas in any of the entries, especial-
ly in ‘remarks’, as this will cause an
error in the computer — ‘extra ignored’
or ‘redo’ — making life just a bit con-
fused. If you do encounter such prob-
lems, forget the entry you were typing
in and press RETv “tuntil you hear ihe
command line click. You can now see

PROGRAM LISTING

0010 POKE 30744,1: POKE 30862,80: POKE 30843,352: CLEAR

10000:CLS

0015 PRINT *SERIAL: TPE2.310586": PRINT
0020 PRINT °*COMPUTER LOG BOOK®: PRINT "BY ALEX JOHNSON®
0030 PRINT *(C) COPYRIGHT 1986°: PRINTE386,"STARTING ENTRY

[spacelKUMBER®;

0040 T3=99: INPUT S%: TF S1)9999 OR S3¢0, 10 ELSE CLS

the reason for this click that cannot be
turned off. Type 'CLEAN’ as before and
restart the entry.

If the screen is complete and cor-
rect, type ‘'ZZ" and press RETURN. This
fills in the entry.

SPECIAL COMMANDS

Once you have a few entries in the
log, you can have some real fun. Re-
member commands can only be
entered on the bottom line of the
screen — the command line, and it
is only necessary to enter the first two
letters of each command.

FIND is usedto look through the log
entries for a specified callsign. When
the callsign is located, it will be dis-
played by filling in the details on the
entry screen. You can then continue
the search for further contacts by
pressing ‘F’, or resume log entries by
pressing ‘C".

DELETE removes an entry, placing
a void on the callsign and removing all
other information. You are asked for
the entry number, so if you're unsure of
the number, use DISPLAY or FIND to
locate it.

SORT rearranges the entries in al-
phabetical order (press 'C’ for callsign)
or in entry order (press ‘E’ for entry).
This is a BASIC program, so sorting
does take a long time. Make yourself a
coffee and have a break while it sorts.

RESTART simply starts the pro-
gram over again. All entries are re-
moved from the memories and all
variables are reset, so SAVE your log
before using RESTART.

DISPLAY prints all entries onto the
screen. if you wish to pause while the
entries are listing, press ‘P’ or the
space bar. To stop the list completely,
press ‘S’. Once printing is complete,
press 'C’ to continue log entries.

0150 PRINT *QTH

0030 DIM I1$(10,T%), J$(10), K$(10): D$="000000": N3=-1

0060 2$="(32 spaces]’
00ESIYEZ"e ik claiasas ctasa s alojo.slujelolof”

? sivvevend " PRINT KAME 2

CP or Continuous Printi1s used to
keep a running hard copy of all entries
as they are made. CP pages are not
headed or numbered. When CP is acti-
vated, 1t is indicated on the command
line. CP is deactivated by retyping CP
on the command line.

PRINT makes a hard copy of the
entire log on the printer. You must first
enter the page length and the inter-
page length. The page length must be
more than six lines. Each page is num-
bered and headed and also has the date
displayed on it. Stop and Pause com-
mands are the same as for DISPLAY.

SAVE is used to send log details
from RAM to tape. The SAVEd entries
all have the same file number, so take
note of the counter number on the da-
tasette each time you SAVE.

LOAD is used 1o retrieve previously
SAVEd files from tape.

MEMORY displays the amount of
RAM, string memory and file space
remaining.

BEEP turns the key beep on and off.
When BEEP is activated it is indicated
on the command line. To deactivate it,
type BE again.

CLEAN is used 1o clear and reprint
the screen if it becomes messy through
an error.

22 enters the on-screen details in
the log file.

| have two versions of the program:
the one listed here (tape version) and
another for VZs with a disk drive. The
disk version is, | must admit, far superi-
or in speed, capacity and commands. If
difficulties are met typing this program
in, and you would like a tape or disk
copy of the working program, please
drop me a line at the address men-
tioned earlier, with a stamped self-ad-
dressed envelope, and | will offer some
suggestions.

0070 IF C¥=1, C%=0: CLS: GOTO 80 ELSE N3=Nitl
0080 N$=MIDS(STR$(K3+S%),2,LEN(STRS (K1+5%)))
0090 IF LENINSIC4, N$="0"tN$: 60TO 90

0100 X=USR(0): PRINTEO,28728128;

0110 PRINTB96, "ENTRY
0120 PRINT "CALLSIGN? VK....': PRINT °*HiMR 2
0130 PRINT "RECD R/S ..": PRINT °SENT R/S ..’
0140 PRINT "FRE® MHZ?": PRINT "MODE 2, .®

? *iK$: PRINT "DDHRYY ? *i0$

0160 PRINT "REMARKS ? .. euvvvnwnnnsans®t 1F K)TS,605UB 640
0170 PRINTB448, "(8 spaces]?(22 spaces]’;

40 — AMATEUR RADIO ACTION Vol. 9 No. 6

3595‘_

0175 IF 73=1, PRINT@448, '[rev]CP’
0176 IF Yi=1, PRINTR4S!, '(revIBE’

0180 PRINTE4564, "*5: INPUT AS: IF A$="", 320 ELSE AS-LEFTS
(A$,2)

0190 IF A$="FI*, 440

0200 IF As="DE*, 510

0210 IF A$="50°, 550

0220 1F A$="RE", RUN _

0230 IF As="D1°, 6720

0240 IF A$="PR", 730

0250 IF A$="CP*, 650

0240 IF A$="SA®, 880

0270 IF A$="L0*, 930

0280 IF A$="NE", 1020

0290 IF A$="BE*, 990

0300 IF A$="22°, 3%0

0305 IF As="CL®, C1=l: 60T0 70

0310 60T0 170

0320 FOR A=l TO 10: PRINTE(AL¥321+104, **i: IF A%=1, INPUT
Ds: 60TO 340

0330 IKPUT T1$(A%,NLI

0340 NEXT: POKE 28471,1: POKE 286471,32: 6070 170

0350 PRINT@O,"[revICHECKING®: 11$(0,N3)=N$: 11$(1,N1)=D$

0351 T1$(2,K3)=11$(2,N)4Y$: TL1S(3,KR)=118(3,K3)+Y$

0352 T1$(4,RK2)=118(4,N2)4YS: TL1S(S,NL)=118(5,N1)¢Y$

0353 118(4,N31=118(4,N2)+YS: T1$(7,K3)=11$(7,N2)4Y$

0334 T18(8,NS)=118(8,NTI+YS: 1IS(9,NBI=11$(9,N2)¢Y$

0355 T1$(10,K11=118(10,N3) ¢Y$

0356 118(2,NSI=LEFTS(IL1$(2,NT),4): 11$(3,K8)=LEFTS
(118(3,K3),4)

0338 T1$(4,NS)=LEFTS(I1$(4,N%),2)% T1S(S,NT)=LEFTS
(11$(5,K%),2)

0360 T1$(6,NSI=LEFTSIT1S(4,N3),7): 118(7,N3)=LEFTS
(11$(7,K31,3)

0342 11$(8,NY)=LEFTS(I1$(8,N2),10): T1$(9,NL)=LEFTS
(11$(9,N2),10)

0344 T1$(10,N3)=LEFTS(LL$(10,NS),16)

0346 IF N1=0, 420

0348 FOR A%=N%-1 TO O STEP -1: IF I1$(2,K3)=11$(2,A%), 380
ELSE NEXT

0370 6070 420

0380 PRINTRO,I1$(0,A%)§" [revIFOUND®: PRINT I1$(2,A%)§
'[spacel®; T1S(1,A%)}

0390 PRINT '(spacel®; I18(3,A%); “[spacel®; 118(9,A1)

0400 PRINT@L3, *CrevIP)RINT DIELETE®

0410 A$=INKEY$: IF A$=*P®, 420 ELSE IF A$="D*, 100 ELSE 410

0420 IF 21=1, 430 ELSE 70

0430 FOR A%=0 TO 10: LPRINT 11$(A3,N3)5: IF ASC10, LPRINT
*(spacel’;

0435 NEXT: LPRINT: 60T0 70

0440 PRINT@Q, *CALLSIGN TO FIND ? VK....": PRINTEL),»*5:
INPUT B$

AMATEUR RADIO ACTION Vol 9 No. 6 a1
4ofsS.

0450 PRINTAO, *(revISEARCHING'j 28: FOR A%=0 TO N3-1

0440 IF 118(2,A8)=D$, 470 ELSE NEXT: 60TO 100

0470 PRINT®O, *(revIFOUND*;Z8: FOR B30 TO 10: PRINTR(BY
§3214106, 118(B3,AL)

0480 NEXT: SOUND 0,2: PRINTG, *[revIFIURTHER C)ONTINUE®

0490 Co=IRKEYS: AS=INKEYS: IF A$="F*, 500 ELSE IF As="C’,
100 ELSE 490

0300 X=USR{0): PRINTR0, "(revISEARCHING®{2$: NEXT: 60T0 100

0310 PRINT@0, °*;: INPUT "ENTRY TO DELETE "jA%: A1=A1-S%

0320 IF AR(0 OR ATINI-1, 100

0330 PRINTR0, “(revIDELETING®;2$: FOR B3=1 TO 10t
[1$(B1,AT)="(spacel®: NEXT

0340 11$(2,A%)="V0ID": SOUND 0,3: 60TO 100

0330 PRINTRO, *SORT BY (revIlEINTRY CIALLSIGN®

0340 AS=INKEY$: IF A$="E" OR A$="C", X=USR(0): 60T0 570
ELSE 350

0370 PRINT®0, *[revISORTING";Z$

0380 FOR AT=0 TO NI-1: FOR D1=0 TO 10: J$(DR)=I1$(D%,A%):
NEXT I

0390 FOR B3=A% TO Ni-1

0600 IF A$="C", IF J$(2)(=11$12,B8), 630

0605 IF A$="E*, IF I$(0)(=11$(0,B3), 630

0610 FOR D30 T0 10: K$(D3)=11$(D%,B): 11$(D3,B3)=18(D%)

0620 I$(3%1=K$(D81: NEXT D3

0630 NEXT B8: FOR D3=0 TO 103 11$(D%,AL)=1$(D%1¢ NEXT D%,AL
: 6010 100

0640 PRINTRO, *(revIFILES FULL®: SOUND 31,13 31,15 31,15
31,1; 0,5: RETURN

0650 IF 23=0, 23=1 ELSE 23=0

0660 €0TO 100

0670 CLS: PRINT *[revIPIAUSE SITOP*: PRINT: SOUND O,1: FOR
A%=0 T0 N3-1

0680 FOR B%=0 T0 10: IF B=6 OR B%=9, PRINT *[7 spacesl®j:
IF B1=9, PRINT * *j

0670 PRINT 11S(BS,AS);* *: NEXT: PRINT: PRINT

0700 AS=IKKEYS: IF A$="[spacel® OR A$='P*, X=USR(0): SOUND
0,5 6010 700

0710 IF A$2*S*, 715 ELSE NEXT

0715 PRINT *[rev1C)ONTINUE®

0720 AS=IKKEYS: IF A$="C*, CLS: 60TO 100 ELSE 720

0730 PRINTEQ, **;: INPUT *PAGE LENSTH'; L1: IF L7, 730

0732 PRINTR0, 26: PRINTRO, **i: INPUT *INTER-PAGE LENGTH';
1]

0734 PRINTRO, Z8: PRINTRO, **;: INPUT *PAGE NUMBER®;P3:
PLa=pt-1

0736 PRINTRO, *SET UP PRINTER [revISITART WHEN READY®

0740 AS=IRKEYS: IF A$="S", X=USR(0): 60TO 750 ELSE 740

0730 PRINT®O, *(revIPRINTINGrev att] [revIPIAUSE SITOP*;
282 GOSUD 740: GOTO 840

0740 P3=P3+1: LPRINT CHRS(14); *CONPUTER LOG BOOK*§
CHRS(15)§

0770 LPRINT TABI45)§ *PAGE *i PY

0780 IF P2}, R=4: BOTO 813

0790 D3=4: LPFINI * BY ALEX JOHNSON®; TAB(401)3
MIBS:iD8,1,215 *1*%

0800 LPRINT NIDS(DS, 3,215 */*; NIDS(DS,S,2)

0810 LPRINT * (C) COPYRIGHT 1984)°

0815 LPRINT: LPRINT

0820 LPRINT "ENRY DATE - CALSGN TIME R S FREQ MD QTH
(8 spaces]’; -

0830 LPRINT "MAMEL? spaces]REMARKS®: LPRINT: RETURN

0840 FOR A%=0 TO N%-1: D3=Di¢l

0843 Bs=INKEYS: A$=INKEYS

0845 IF A$="[spacel® OR A$="P", X=USR(0): SOUND 0,5: 60TC
843

0848 (F A$='S*, 100

0850 IF DI)LY, FOR D%=1 TO I%: LPRINT: NEXT: GOSUB 760

0840 FOR B%=0 70 10: LPRINT 11$(BY,A%);: IF B1C10, LPRINT
*[spacel’;

0870 NEXT: LPRINT: NEXT: 6070 100

0880 CLS: PRINT *[rev]SAVE(rev oftf] FILENAME 5. INPUT C$®

0885 PRINTES, *(revISITART WHEN READY(rev ottl®;2$

0890 A$=INKEYS: IF A$="S", X=USR(Q): PRINTR4, *[rev]ING"{l$
+60TO 900 ELSE 890

0900 PRINTE *LOG.DATA.START®,Cs,S1, N3

0905 FOR A%=0 T0 N3-1: A$="": FOR B1=0 T0 10: A$S=A$+Il$
(B%,A%): NEXT

0910 PRINTA °*LOG*,AS

0920 PRINTE98, AL C$: NEXT: GOTO 98¢

0930 CLS: PRINT *[rev]LOAD(rev otf] FILENAME *3: INPUT ($*

0935 PRIKTES, *LrevISITART WHEN READY';Z$

0940 AS=INKEY$: IF A$="'S", X=USR(0): PRINTE4, *[rev]ING"}
28: G0TO 950 ELSE 940

0950 INPUTE *LOG.DATA.START', As S%, N1: IF As=Cs, 960 ELSE
930

0960 FOR A3=0 TO N1-1: INPUTH °LOG",A$

0961 118(0,A%)=NIDS(AS, L, 415 T1S(1,ALI=NIDS(AS,S, 10)

0962 118(2,AY)=NIDS(AS, 11, 161% T1$(3,A%)=N1DS(AS,17,20)

0963 11$(4,A%)=NI1DS(AS,21,22): T18(5,A%)=NIDS(AS, 23,24}

0964 11$(6,AY)=NIDS(AS,25,31): 118(7,A1)=HIDS(AS,32,34)

0965 115(8,A%)=N1DS(AS,35,46): 11$(9,A3)=N1DS(AS,47,56]

0946 118(10,A%)=NID$(AS,57,72)

0970 PRINT AR C$: NEXT

0980 SOUND 20,9: C3=1: GOTO 70

0990 IF PEEK (307791=0, POKE 30779,1: Y1=0: 6070 100

1000 POKE 30779,0% Y3=1: GOTO 100

1010 SOUND 0,5% PRINTRO, Z$: 6070 100

1020 CLS: PRINT *(revIMEMORY LEFT®: POKE 30862,212: POKE
30863,39

1030 PRINT: PRINT: PRINT T%-NR+l; °FILES LEFT®

1040 PRINT USR(X}; °*BYTES OF RAM FREE®

1050 PRINT USR(X$); °*BYTES OF STRING RAM FREE': PRINT

1060 PRINT: PRINT: PRINT “(revIC)ONTINUE®

1070 POKE 30862,80: POKE 30863,32

1080 A$=INKEYS: IF A$="C", C1=1: 6070 70 ELSE 1080

42 — AMATEUR RADIO ACTION Vol. S No. 6

Basic program for
vented box enclosures

This short BASIC program for VZ computers will design the size of
the vent needed in a bass reflex enclosure to tune it to a given frequen-
cy. It calculates the length of the vent from the given diameter, box
volume and box frequency. Also the tuned frequency of an existing en-
closure can be found from the cabinet volume and vent dimensions.

Surprising though it may be, the woofer size or type does not affect
the tuned frequency; this means that you won't need any speaker data.

If the program gives a vent length of about 20mm then just a hole in
the baffle is needed. Remember, however, that any vent should have a
diameter not less than one quarter of the woofer diameter to prevent
excessive air velocity.

For checking an existing design press RETURN when “BOX
FREQ. HZ...” appears. This frequency is then calculated using the
other data. If “NEW VENT DIAMETER MM. " appears, enter a new
larger diameter and try again since the desired frequency cannot be
achieved with the previous value.

Phil Allison,

Summer Hill, NSW.

10 CLS:PRINT

30 PRINT" PROGRAM TOQ CALCULATE VENTED™

35 PRINT” BOX PARAMETERS™

40 PRINT™ ®#%easetacsescsssocsssnsarsen EoINT.BRINT
SO INPUT" BOX VOLUME LITRES " .VB:PRINT:IFVEB«=0THENSH
50 INPUT" VENT DIAMETER MM. ":0:PRINT:IFD.:=0THEN<SD
&1 IFFB>OTHEN10Q .

70 INPUT" BOX FREQ. HZ .. _“.FB:PRINT:IFFB'OTHEN70
71 IFFB>OTHEN100)
80 INPUT"™ VENT LENGTH MM ., . ":L:PRINT:IFL<OJTHENSD

90 IF FB=OTHEN120

100 L=2360°D"2/(VB*FB*21-.83°D:IFL.OTHENPRINT" NEW".:GCGTORD
101 PRINT:PRINT

110 PRINT"™ VENT LENGTH MM: *“::PRINTUSING“Fg###.4#":.L
111 PRINT"™ VENT AREA SO.CM: “::FRINTUSING"Yzs# . 8".7.
112 GOTO150

130 FB=((2360°D*2)/t(L+.8°D)°*VB11*0.5:PRINT:FRINT
140 PRINT" BOX FREQ. HZ: " :PRINTUSING"## #".FB
150 PRINT" swwasszsyzaazszzzzazaszas:zzz":FB:0

160 PRINT:PRINT:GOTOSO

ASE-X°D 2

ELECTRONICS Australia, November 1986 35

Memory mapping and
computer number systems
— using the VZ200/300

Bob Kitch

This contribution will hopefully stimulate users of the VZ200O/300 (or perhaps
other small micros) to think about what actually lies behind the keyboard or
monitor. Therein resides, not simply a collection of electronic components,
but a truly creative, near-art form; only restricted by the users’ ingenuity. |
also hope to provide a firm foundation for users to understand how they
should visualise or conceive the internals of their computer. This will lead to
more imaginative and rewarding use of their somewhat meagre hardware

resources.

THE COMPUTER can be conceptualised (thought of) on two
distinct planes: (i) the tangible, mechanical or physical lev-
el; and (ii) the intractable, esoteric or conceptual level. These
two “states’” are often synonymously associated with the
hardware and software aspects of computing but they are
not quite analogous as a brief consideration should reveal.

The realisation that the computer can in reality adopt any
position between these two end-states sheds some insight into
how useful a computer can be as a problem solving tool or
as a creative device.

The computer is a virtual machine. It is incapable of do-
ing mechanical work such as that done by an internal com-
bustion engine. Furthermore, a computer can be configured
via suitable programming to carry out any function that we
may envisage for it. Again the analogy with a tool, for in-
stance a spanner, is instructive. A shifting spanner has only
one use — it is dedicated to that job (although I have seen
some tradesmen use it as a hammer!}. The important notion
in computing is that our imagination is the limiting factor
in determining the usefulness of the computer. We may wish
to use it to monitor the security of our home or to create fan-
tasies of our mind in intellectual and role-playing games, to
carry out tedious and repetitive number crunching, or to cor-
rect text for us — etc. The spectrum of jobs is vast, and in-
creasing almost daily.

Transformation

Somewhere between the conception of an idea and the trans-
lation of this into a computer-based chore, lies the fundamen-
tal task of the programmer. The use of the operation called
“transformation” is vital to the succes of this translation. The
transformation procedure takes a particular notion in our
minds (the “object’’) and produces a ‘“model” of this in the
computer. The model may be termed the ““image’. A good
computer image is a skilful combination of the joint hard-
ware and software aspects of the particular computing con-
figuration.

Often a number of step-wise transformations are required
to reach the desired goal or end-point. The distribution of
tasks proportioned between hardware and software depends
upon

90 — Australian Electronics Monthly — Dec. 1986"

i) the resources available, and
ii) the particular talents of the person undertaking the
implementation.

Electrical engineers tend to solve problems with hardware
intensive solutions, whilst programmers often develop
elaborate algorithmic software solutions.

Not surprisingly, transformation has a well developed and
rigorous expression in mathematics where the somewhat al-
lied ideas of correspondence (between similar objects) and
function (connecting objects) have relevance. The box enti-
tled “Transformation Concepts’ accompanying this article
futher elaborates upon some of the powerful transformation
concepts — in layman'’s language.

The way in which “correspondence’” occurs in computer
science and with which perhaps most programmers are
familiar, lies in the various types of codes and coding prin-
ciples which are employed to connect the diversity of ideas
under software control. Note that in transformations from
object to image the direction of the conceptual movement
may be in either direction or sense.

Thus encoding represents transforming the object into the
image and decoding represents returning the object from the
image. Also, multiple levels of coding are often used, depend-
ing upon where we are positioned in the hardware-software
spectrum.

Codes

Consider the following code types:

i) Codes used by electronic circuits to perform digital oper-
ations e.g: binary codes.

i) Codes used to convertdecimal numbers into binary form
. e.g: binary coded decimal (BCD) and gray scale.

iii) Codes used to convert decimal numbers and alphabetic
symbols into digital form e.g: ASCII, EBCDIC and
~ Baudot code.

iy) Codes used by computers to perform a prescribed ser-

_jes of operations e.g: Z-80 instruction code and PDPS8/E. p

v < VZ-300
— [Xt (%) A ——————
A c o [
v E o E . © v g
&0 o) % std. 4’ 64K Std. + 64K
e ;g v 16K Elpth_(_On" Memory Expansion 16K Expansion Memory Expansion
-1 65535 FFFF - -
-2048 63488 £800 S ~ ” — ~ L
-2049 63487 FIFF 2
e o B EY3 - -
I c 3 c c c
) o L < o o
- © @ - @ @™ @
£ z z = = z z
9 (4 ax =g [-3 -4
o 93 b4 - o 2 x >
e 2 b= £ ot bt 2
© © ©° S h-] ° °
o @ o 2 Y v @
-12268 53248 D000 £ = § x § § §
-12889 53247 CFFF - hed < x = 3 -
-16384 49152 €000 x
<<
-16385 49151 BFFF = 2K o -
-18432 47104 8800 c Ehn ggn:f fixed
-18433 47103 BIFF 2
¢
~
o 12K top of fixed
w RAM Bank
=4
o
Internal User RAM 16K
-28672 36864 9000
-28673 36863 8FFF
_=32768 Internal User RAM 6K
+32767
30720 7800 Reserved RAN Reserved RAM
30719 17FF)
28672 7000 Video RAM 2K Video RAM 2K
28671 6FFF
26624 6800 Memory Mapped 1/0 2K Memory Mapped 1/0 2K
26623 67FF
24576 6000
x x
24575 SEFF o S
© ©
v [
e 00S b D0S
v ROM [ROM
° 8K ° 8K
[-4 (-4
16384 4000
16383 3FFF
ROM
1
8K
8192 2000
8191 1FFF
ROM ROM
0 0
8K 16K
'z-fF - ’,—-FF 0
0 0000 - Port Addressed I1/0 _- Oopo,.t Addressed 1/
MEMORY MAPPING
FOR
R. B. KITCH March 1986 Figure 1. VZ-200 ¢ VZ-300
i ——————— e =

=

‘Dec. 1986 — Australian Electronics Monthly — 91

NUMBER BASE CONVERSION & MEMORY MAPPING

In the accompanying article the need to be ab'le“?tp change num-
ber representations, according to differing bases, becomes ap-
parent.

Three bases are usually cited and often freely interchanged.
These are:

base 10 — decimal (dec./D) uses symbols 0-9
base 16 — hexadecimal (hex./H) uses symbols 0-9, A-F
base 2 — binary (bin./B) uses symbols 0 and 1

The first system is the most familiar to us. The last is the num-
ber system of digital computers. The hex system is a convenient
_intermediate form between decimal and binary systems. (A fourth
system to base 8, or octal — using symbols 0-7 — is sometimes
employed and is also a convenient intermediate form — see later).
The accompanying table is an indispensable reference for con-
verting base numbers. | always have this chart alongside me when
programming — although some people may be fortunate enough
to have an electronic calculator with base conversion functions.
Because there are three base numbers, it follows that there are
six possible types of conversion. At the conclusion of this box you
should be familiar with each conversion and be able to manipu-
late the resulting numbers.

DESCRIPTION OF TABLE
Table 1 is composed of six columns.

Column 1 (left-hand most) represents single hex digit ranging
from OH to FH.

Columns 2 to 5 are labelled Most Significant 3-0 for decimal
numbers.

MSO corresponds with 16**0*N (1*N)

MS1 " » 7 16**1*N(16°N)
MS2 " " 7 16**2°N(256°N)
MS3 " " " 16°*3*N(4096°N)

Column 6 is the four-bit binary number corresponding to the hex
digit in column 1.

One hex digit can represent half-a-byte (one-nibble) of binary in-
formation. Hence the close relationship between hex and binary
representations. A 16-bit (two-byte) binary number maps onto four
hex digits. A single byte maps onto two hex digits. (Octal or base-8
numbers map onto three bits of binary hence an eight-bit binary
number can be represented by three octal digits.)

CONVERSION PROCEDURE
A. We will start converting a hex address value into its correspond-
ing decimal and binary values.

1. Converting hex to dec. We will do this using.an example. For
instance, what is the decimal mapping of address 345CH? Note
that the Most Significant Byte (MSB) is 34H and the Least Signifi-
cant Byte (LSB) is SCH.

The corresponding decimal for 3H (actually 3000H) appears in
column MS3 and maps as 12288D. Similarly, the 4H (400H) in po-
sition MS2 maps as 1024D; 5H or 50H maps as 80D in MS1 and
finally, CH corresponds to 12D from MSO.

Thus,

3000H ——» 12288D
400H — 1024D
50H —» 80D

+ CH —» + 12D

345CH - —»13404D

So 345CH maps as 13404D. A little involved, but easy with the
table.

2. Converting hex to bin. Remember | said that hex and binary sys-
tems are closely related. Again, what is the binary mapping of ad-
dress 345CH?

3 4 5 C
L

0011 0100 0101 1100 B — trom column 6
So the binary address for 345Ch would be —

H — trom column 1

MSB 001101008 LSB 010111008

It could hardly be simpler!
See how difficult it would be to remember binary, but hex is much

B. Letus naow take a decimal number and convert it i nto hex and
then binary!

3. Converting dec to hex. What is the hex mapping of 22010D7?
This involves a little scanning of MS3-MSO of the table.

First scan down MS3 for a decimal number which is equal to,
or just less than, 22010D. This is seen to be 20480D which maps
as 5000H. Subtract this value from 22010D and look for the num-
ber just lower than this is MS2. For example 22010D — 20480D
= 1530D. The number just lower than this in MS2 is 1280D which
maps as 500H. The remainder from this operation is 250D which
corresponds to 240D or FOH in MS1. The final remainder is 10D
which maps as AH in MSO.

Thus:

© 22010D

-204800 —»- 5000H
- 12800 —» S00H
- 2400 —»- FOH
- 10D » + AH

00 — 55FAH

It should be easy to convert this hex number into binary
equivalent.
55FAH maps as 01010101 11111010 B

C. Let’s now start with a binary number and convert it to hex and
then to decimal (as previously done).

4. Converting bin to hex. By now you should be getting the idea.
Simple isn’t it? For example, convert the two-byte address
10011111 110100118 (looks horrible doesn't it?) into its hex value
and then decimal value.

1001 1111 1101 0011 B — from column 6
9 F D

3 H — trom column 1
Furthermore,

9000H ——» 36864D
FOOH —» 3840D
DOH ——» 208D
_+ 3H—>» + 3D

9FD3H —— 40915D

For those that have been following closely, 40915D is an unsigned
decimal and mapped as a signed decimal it is

40915 — 65536 = -24621D

(see later in main article if unsure)

So in summary, we now have four ways of mapping the same
address:

hex 9FD3H

unsigned decimal 40915D

signed decimal -24621D

binary MSB 100111118 LSB 110100118

As a final comment and for completeness, it should be said that
all the examples given herein are for unsigned decimal humbers
in the range of 0 to 65535D. These map onto two-byte numbers
ranging from 0000H to FFFFH in hex and 00000000 00000000 to
11111111 11111111 in binary.

The same principles apply for single-byte numbers gxcept that
the range of unsigned decimals is reduced to 0 to 255D and 00H
to FFH in hex. Only MS1 and MS0 need be used in converting
single-byte numbers.)

Given this background then, it should be easy to calculate the
appropriate values to POKE into addresses 30862D (788EH) and
30863D (788FH) to initialise the USR() command on the VZ. But
more of that next time.

If you want some practice in number base conversion and re-
quire some additional confidence in following the procedures set
out herein then take some addresses from the memory map and

| more concise and memorable? g;actise converting them. (I hope | get them rightl)

92 — Australian Electronics Monthly — Dec. 1986

3. ¢

v) Codes used by programmers to describe a problem to areas of memory. This clearly shows why expansion mod-
the computer e.g: BASIC, FORTRAN, and SAS. ules are not interchangeable between models. Fortunately all

vi) Codes used by the populace to have work done by a com- of_the “syster’r_l areas” are compatible across models — other-
puter which is often transparent to the user. Everyday- wise software would not be transportable. All memory ad-
type language is often used to communicate to the com- dresses below the reserved RAM (communications area) are

5 : : . A" thesame oneither system. This includes video RAM, memory
puter. (i.e: no special skills are required) e.g: POS (‘Point- '
of-sale’) terminals or pushbutton data entry panels on nlllappet.i I}/IO, pl)ort address%d.I/O a}?d POS ROMI; i (rinos't of
Mictowavelovens eto! the peripherals are mappe into the I/O areas, these devices
are also compatible between models.

All of these forms of transformation (or coding) describe 3
a relation or function between any object (the notion) and Numbel’ing sysiems for memory mapp'“Q

its corres,.onding image (the programme). Flowcharting is ~ The three columns extending down the left-hand side of the
often an intermediate Coding Step in the transformation map are the memory address ranges in the Computer that are
process. handled by the Z-80 microprocessor. Again the concept of

“mapping” is worth noting — hecause the CPU uses none
The memory Image of the techniques shown in the columns to actually address
memory! The actual (object) addressing method is a 16-bit
wide binary sytem which, with suitable decoding, can resolve
all the addressing functions necessary. A binary view of the
addressing is unnecessarily complicated to obtaining a clear
image of the VZ's address space.

An explanation of the three numbering systems used on
the memory map follows.

Two forms of decimal (base 10) notation and one of hex-
adecimal (base 16) are shown. These are image numbering
systems of the actual (object) 16-bit binary (base 2) method
used by the Z-80 (Port addressed 1/0 uses only eight-bits of
the Least Significant Byte of the address, to uniquely identi-
fy the 256 1/0O ports).

If you are not particulary familiar with converting or deal-
ing with numbers derived from differing bases, then read the
boxes called “Number Base Conversion’ accompanying this
article.

Towards the hardware end of the spectrum previously allud-
ed to lies the memory or storage system of the computer. Both
the programme (or driver) and data are stored in memory
which is sequentially addressed in the present generation of
Von Neumann machines. Often a successful programmer
“needs to get close” to this physical device — particularly
in a small microcomputer environment where the memory
resource is usually limited. 4K of memory usually requires
some smart coding to get a worthwhile programme running
— and often in machine code. Larger machines sometimes
use a virtual-or paged memory system so that the program-
mer does not need to get close to the hardware limitations.
Such things as programme and storage overlaying can be
done to make the memory system appearlarger than it actu-
ally is. The new generation of 16- and 32-bit microproces-
sors include on-chip memory management functions (e.g: the
80286) to handle memory paging.

The usual way of describing the memory system of a par-
ticular computer is via the “Memory Map”. This is a trans- Unsigned decimal addressing

formation of the actual (object) memory chips contained in This number system is shown in the central column of the
the computer. This conceptual diagram (image) is an aid for ~ memory map. It is perhaps the easiest to understand and ex-
the programmer. It is not a map in the same sense asa geo- plain. With a 16-bit binary number as used on the address
graphic (or road) map, but rather it has a one-to-one cor- bus, it is possible to uniquely map 2**16 or 65536 memory
respondence with the actual memory system. It does not]ocations. These addresses may furthermore be mapped into
actually point up any directions in the memory, in the way a one-dimensional vector with memory location OD (2**1-1)
that a road map does. The memory map is simply a useful mapped at the bottom and memory location 65535D (2**16-1)
programmers’ image of the storage which can be accessed mapped at the top. This convention of “top” and *bottom”

by the CPU and the way it is organised. may be inverted — but top of memory is conventionally
referred to as the bigger decimal number — so it makes little
VZ memory maps logical sense to have “top’ at the bottom! (Note that some

memory maps are drawn in this inverted sense).

Another sense of mapping is apparent and worth mention-
ing here. This type of map is a byte-mapped transformation
as each address is actually eight-bits wide. Most data process-
ing programming deals with bytes as the fundamental units
of information. However, the Z-80 can be addressed down
to bit level and hence another bit-mapped image containing
524288 (65536*8) bits could be conceived. Some controller
applications make use of bit mapping because often the avail-
able RAM for programme use is rather restricted and usual-
ly the definition or resolution of the process is two-state and
can be aptly modelled by a single-bit.

In the unsigned decimal mapping methods, magnitude or
size of the address number uniquely defines the location of
the address in memory. Relational operators such as ‘‘great-
er than’ and “less than” work correctly. This image of ad-
dressing is most easily visualised but it bears a difficult
relationship to the 16-bit object addressing.

(You thought I was never going to get to it!) Figure 1 is a
Universal Memory Map) for all the VZ-200 and VZ-300 com-
pluters. These are expandable machines in that additional
memory modules, disc systems and various other peripher-
als can be added onto the standard system. Eight distinct
types of machine are detailed:

a) standard 8K’ VZ-200 and
b) standard ““18K" VZ-300 (both shown in the dark outline)

In the standard machine an area of 10K is reserved for plug-
in ROM cartridges. To each of the types can be added:

i) a 16K memory expansion module or
ii) a 64K memory expansion module, and additionally
iii) a disc system containing an 8K DOS can be added which
utilises portion of the reserved ROM area.

ight t f VZ configurati i d
Sh’gsvi:eitl)‘ly;ilggl?[t‘e 3/1;?es o configuration are possible an Hexadecimal addressing

A study of the range of memory expansion modulesadded This system is shown in the third column and has g stronger
to the VZ-200 or VZ-300 indicates that they occupy different relationship to the two-byte wide addressing used by the CPU p

Dec. 1986 — Australian Electronics Monthly — 93

TRANSFORMATION CONCEPTS - -

In a transformation, the point being transformed is called the ob-
Ject. A transformation maps an object onto its’ image according
to some relation.

An image is the result when an object is transformed. e.g:

X —»X+2

3—» 5

0 —» 2

6 —» 8

-7 —»-5
object image

‘the image of 3 is 5"

Relations are a way of connecting sets of numbers — a map-
ping is a special relation.

In a mapping, any number in the set being mapped is an object,
but the entire set being mapped is usually called the domain.

The domain of a function is a set of numbers mapped by the
function.
The domain is the object set.

e.g: domain + range
—ti XX 42
—> 73

6

=i 111

—>» \18

BN A I Do d

“the set (1, 2, 3, 4) is the domain”

A mapping is a relation in which, for every object mapped, there
is one, and only one, image.

e.g: X it X+ 7 But X is a factor of
2Qy———=w» (9 2 —\—> 4
3| —= |10 3| —™| 6
5| — |12 5 X 9
6] —» \13 6 15

is a valid Thapping. is NOT a mapping.

Functions are special relations in which each object is uniquely
mapped onto one image.

e.g: X »- X2
+2
B
3 w=———b 9
4 > 16
is a valid function.
But X —» X**0.5 (square root of X)
1 ———» +1o0r-1
4 — - +20r-2

9 ———— - +30r-3
is NOT a valid function.

Correspondence has four types:
Mappings are:

Many to one correspondence One to one correspondence

e) =
v b v
c—~ w (3 w
d X d X
e><xy B y
t z f z

NOT mappings are:

Many to many correspondence One to many correspondence
a u a u
b 4 v
(o] w
X § —_— %

' P

-0 Qoo
N< X € <

94 — Australian Electronics Monthly — Dec. 1986

bus systen'l.' Each nibble (half-a-byte or four-bits) of the ad-
dress is-mapped onto one hexadecimal digit.

Whilst this system may appear a little unfamiliar, it has
magnitude‘and sense — the same as the unsigned decimal
notation::Therefore, similar connotations apply to the hex-
adecimal system as to the unsigned decimal system.

The correspondence between “top of memory"” in an un-
expanded VZ-200 as being 36863D or 8FFFH should be ob-
vious from the memory map. It is simply a different way (by
virtue of the number base difference) of image-mapping the
same object.

In certain applications it is more convenient to use decimal
notation — and in others it is clearer to use hexadecimal. If
it is necessary to get close to the hardware, such as when
designing the address decoding for a peripheral expansion,
then hexadecimal, with its closer relationship to bus address-
ing, is better. Alternatively, when a programmer is wanting
to locate a routine in memory, there is less need to get close
to the machine, (e.g: when PEEKing or POKEing), and the
more familiar decimal system is easier. In reality, ex-
perienced programmers or engineers readily flip from one
to the other — particularly if they have a “smart’’ electronic
calculator with base conversion functions.

Up to this point, all should appear to be logical, orderly
and comprehensible. Unfortunately, the people who wrote
the Microsoft version of the BASIC interpreter resident in
the VZ (and previously used in the TRS-80 Level I1, System-80
and PET) must have thought that unsigned decimal and hex-
adecimal were too logical and easily understood! If you try
to PEEK into an address higher than 32767D or 7FFFH you
will obtain an “OVERFLOW ERROR’’ message during run
time. A look at the Reference Manual informs you that the
valid address range is from -32768D to +32767D. Fair
enough, but can one now assme that “top of memory” is
+32767D and "‘bottom of memory” is -32768D. A reasona-
ble deduction, but unfortunately, entirely incorrect! Is our
faith in mathematics and logic (relational operators) mis-

_placed?

Signed decimal addressing

The culprit is the signed decimal numbering system shown
in the left hand column of the memory map. This number
system is closely derived from the 16-bit binary system. The
signed decimal numbering is developed from the two's com-

plement binary system which is a method that facilitates the p

TABLE 1.
CONVERSION DECIMAL — HEXADECIMAL — BINARY
Dec.
MSB LSB
4096 256 16 1
Hex. MS3 MS2 | MS1 MSO Bin.
0 0 0 0 0 0000
1 4096 256 16 1 0001
2 8192 512 32 2 0010
3 12288 768 48 3 0011
4 16384 1024 64 4 0100
5 20480 1280 80 5 0101
6 24576 1536 96 6 0110
7 28672 1792 112 7 0111
8 32768 2048 128 8 1000
9 36864 2304 144 9 1001
A 40960 2560 160 10 1010
B 45056 2816 176 11 1011
c 49152 3072 192 12 1100
D 53348 3328 208 13 1101
E 57344. | 3584 224 14 1110
F 61440 3840 240 15 1111

manipulation of negative numbers. Do not be overwhelmed will not provide a consecutive listing of memory. It will

if the terms are unfamiliar as it is not essential to understand ~ commence at the bas= of the upper half of memory (SD =

their derivation. There exists'a simple relationship between 32768D) and proceed to the top of memory (SD = -1). It will

the familiar unsigned decimal and the_signed decimal then leap to the bottom of memory (SD = OD) and proceed

systems. . to the mid memory (SD = +32767D) position. Not quite what
The simplest way of expressing the relationship:is that if was intended!;

the unsigned decimal address is greater than'32767D then To achieve the desired result, the following loop could be
gubtll')act 65536D from the unsigned decimal value — there- written: '
y obtaining a (negative) signed decimal. If the unsigned
decimal is less than or equal to 32767D then the signed 10 FOR UD = 0 TO 65535
decimal value maps directly. Expressing this in BASIC is as 20 SD = UD: IF UD > 32767 THEN SD = UD — 65536
follows: 30 V- = PEEK (SD)
40 PRINT SD, UD, V
UD = unsigned decimal value 50 NEXT UD

SD = signed decimal value .
This will correctly step-up through memory consecutive-

To convert UD to SD: ly from bottom to top (but slowly!)

15 IF UD > 32767 THEN SD = UD — 65536 Uses of the Lthaluio s AUl o
ELSE SD = UD Having worked thus far through this exposition, what are
some of the uses to which the memory map can be put? The
To convert SD to UD first use is when it provides the programmer with a clear im-
age (that word again) of how the addressable memory of the
25 IF SD< 0 THEN UD = SD + 65536 computer is organised. A number of advanced programming
ELSE UD = SD techniques for the BASIC interpreter also become available.

; For example, the utilisation of the memory by a BASIC
Refer to the mapping in the extreme left hand column of =~ Programme can be determined. Overlaying of the Programme

the memory map where the signed decimal system is detailed. Statement Table by another routine but with retention of the
Bottom of memory is still OD but top of memory is =1D. A Variable List Table, becomes possible. Also Assembly Lan-
very important discontinuity occurs in the numbering sys- guage routines can be loaded int.o.Free Space and ca}led by
tem at mid-memory, where adjacent bytes are numbered the USR statement. Overwriting and corruption of
32767D and -32768D. Relational operators do not work in programmes (images) can be avoided by reference to the map
this mapping system. during loading. If, however, this does inadvertently occur,

Suppose one wanted to PEEK into each consecutive then thf’ memory map becomes an important load map for
memory address over the entire range of memory from OD debugging purposes.

to-1D (note!). As remarked previously, it is necessary to use A more detailed description of the I/O area (including the
signed decimals when PEEKing. , video RAM) mapping for the peripheral devices, and the com-
The loop written in BASIC — munications area would provide more information for ad-
vanced programming techniques. Perhaps, with the Editor’s
10 FOR SD = -32768 TO +32767 indulgence, we may be able to explore these interesting areas
20 V = PEEK (SD) at a future date? Meanwhile, get to understand your VZ'd,
30 PRINT SD, V practise number base conversions and let your imagination

40 NEXT SD run with applications for the VZ. 1

Dec. 1986 — Australian Electronics Monthly — 95

Feedline Data Calculations for the
VZ200/300

The story of how this program came about is
simple, but | believe it could be of interest. it all
began when the price dropped on the VZ200
and Wal VK4AIV, bought one.

After learning the basics of its operation, he
began to search for useful programs involving
amateur radio, fincing them few and far
between.

Muchlater, | purchased a VZ300 at the same
price as Wal's VZ200 and naturally asked Wal
what programs he had.

. Upon discovering the scarcity, | sat down
and wrote a series of short programs to ease
the problems of endless work with calculator,

18 CLS:GOsUE=ams

20 PRIMT®EZS,"1- COH=1AL CARELE DRTA®
2@ PRIMT@LI2%, "2- OFEH WIRE FEEGER DATH
48 PREIMTRZ2S1."2- "

o8 PRIWMTEZEF, "d4- @

il FPRIMNTESSS, "CHOOSE CFTION" « THRUTH
TEHOITFH=1THEM1HG

20 IFH=2THEMZHEE

29 REMEAFEEERE3F TR ETEEE

9B REMEfEddddisddddidiidisy

1ol COsUERE=2a06

11 FRIMTEZS. "1 =THMFEDAMZE OF o] ALe
128 FRIWMTEIZI." CHELE"

1260 PRIMNTRLI2S, "2-IHSIDE DIA.0F OQTER"
148 FRIWTRZZF. " DT O

1568 PREIHTR221, "I=-0UTST0HE DIA.DF THEERY
156 FPRIMNTR227 . "A=CLT OFF FREEOUEHCY
iTE FPRINTES4E, "CHOOSE OFT IO THIFLITH
128 1FH=1THEHNSME -

198 IFH=2THEM 1 e

208 TFH=2THEMT

TEM=a4THEN

-3 JUCL

TR
=D1./D@

T HF LT ”F HTF‘}-
THFUT"EMTER

pen and paper, for amateur radio work.

Copies of these programs were given to Wal,
who tidied them up and tied them together.
This listing is part of the resuilt.

The program is to enable those interested to
quickly calculate parameters for the construc-
tion of coaxual cable or open wire feeder
sections for matching antennas to feedlines.

The calculations are derived from standard
amateur radio books and simply are converted
into Basic statements.

They are as follows:

COAXIAL CABLE DATA
1 Impedance of a cable of a given size.

4_1 1

TFH< I THERTGTE
IFTJ 4TPH741H1L1

1THE
AT T [k

T0E DIFAMETER OF

LIAMETER G

mER =~1Hh(Y2/2 99259
BEE =1 EET
S76 FRINTI

Page 10 -AMATEUR RADIO,March 1987

" I_l HM=

IMFEDEHCE"

b 3 p.10-12,

QPR
I HHEk

Rick Buhre VK4AIM
- 41 Mogford Street, Mackay, Qkd. 4740

" This program came about
when the price of the VZ200
dropped dramatically.

2 Inside diameter of outer conductor for a
%iven impedance and inner conductor size.
utside diameter of inner conductor for a
(gscven impedance and outer conductor size.
ut off frequency for a cable of given size
and impedance.

OPEN WIRE FEEDER DATA

1 Impedance of feeders of known wire size
and spacing.

2 Spacing required for a given wire size and
impedance.

There is space in the program for future
additions to be inserted. | hope many amateurs

will find it of use.
ar

K C IR T |

OO T e

=a

FRIMT"ANOTHER TRY?45, H"
THFLITHS
IFAS=CHRES 25 3 THEHSEE
IFAS=CHRSS 72 2 THEH LS
FEMFFFEFFEEEREE sy
FEMtEEddss syttt
LGOSUEZSEA
IHFUT"EHTER . IMPEDAHCE" : 2
IMPUT"EHMTER OUTSIDE DIAMETEROF INHER COHCLCTOR" ;D

YA R KR
S e

10 =

_. _..,_ ,,..,_
Tt = (000
]

S

Y
T

=

i
)

=N
ol

~—
B

el U BNV IAF TN W |
DR

DA

ld=e LEy ad
CPRIMTUIMZIGE GIAMETER OF QUTER COMGUCTOR=" ;1
FRINT"AMOTHER TRYTY.H"

IMPUTHS

IFA%=CHE®. 23 *THEH 1 28R
TFA%=CHES: 73 2 THEM 1A
R 0 202 20 ol ol 0 S 0 ol o 0 2 ol ot o
FEMEs3Efssdissssdiiiyss
GOSUE256A

THFUT"ENTER IHFEDAHCE"; Z

THRPUTYEHTER THSZTOE DIAMETER OF QOUTER COMDUICTOR" ;[
=SR2
E=Z$Tﬁﬁ3€
V=1 E)
Bl=1 %
*‘H#D
FRIMTYOUTZI0E [IQHFTFF OF THHER COMDUCTOR=" ;=
FEIMTYAMOTHER TEYTY . H"

IHFPUTHS

IFA%=CHES 29 3 THEM 1 2068

IFAS=CHRES 72 s THEM 1H
| S 0 2 0 e e A 0 M e 20 2 2 O
FEEMErEEEsedbddddsidissd
GO=LRE25=5EA

THFUTYERHTER THSIDE DIE.OUTER COMDCTOR" 11
ITHFUT"EWHTER QUTSTRE DIA. THHER COHDUCTOR" : D@
i I L
HETDIASC D1 +0E D
FRIMT"CUT QOFF FREQLEHCY=" % "MHI"
A PEIMT"AHOTHER TR H"
14760 THFLITAS
1420 IFA%=CHES 2% »THEH 1486
142@ IFA%=CHRES:Y 72 THEHLA
1491 REM#$ddtissdistsdiiisty
14592 REMEsEdissddssiidisadsts
SO ol X5 1 e 2 S a2 2 e e 20 2 o A 8

SaRE GOELESEAE
- 1 FRIMTESS, "1 -TMFERAHCE OF OFEH"

g PREIMT®13L." WIRE FEEDER"
FRIMT@19S, *o-SPAnTHG OF OPER"
FRIMHTEZST " MIRE FEEDMER"
FRIMTEZS] 2= Y
Fée THT@: PSS
FRTHT®3, rH e OF T TN THPELITH
TFH=2THE R

IFH=1THEHZZE: .
Af=IHEEYS : IFASS *CHRSC IS D THEN 1 1A
IFAS=CHR S 45 sTHEH 18

50

LI X
=
AR

i 1

A
AR R B W IR AR AR

IO 0

AR RN P W I I DR R

T T .
a) S T SN

L)

Yo
2!

L G 0 DO O T T o T

(SR IS W AR I RN)

3
e

FIT N N

U

T
SULRLURAL I Y

il e e el e e e i S S SN SN SR W PR o Sy SR S VP VO S P O P
r
-+

DO I < PR Y ISR I PSR R s B i e |

L

,_
|
N

1
DS ST

H
=) T TG :
U R

—
!
‘!

!y
e T T

T [
)

Joud—
—
DR N

P

AMATEUR RADIO,March 1937. Page 11

[T S Q0 o A o e e e o
CLE:PEIMT"OFEH WIERE TMFPEDRRCE"

2216 IHPUT"SPACIHE" [

IWFHT”FIH OF WIRE": {2

FERIMTZ "OHME TMRELDAMCE
FEIHT"AHOTHER TREYYY K"
IHFLITAS)
IFA%=CHE S 22 A THEHZZAE
TFAS=CHES 72 A THEM LG

A CLZFPRIMT"TO FIND SPACTHG OFEH WIRE"

IMFUT"EHTER T
IHFHT“HIFF LIR": D
AEIRSETE Y =10 "“‘F*'|*|*1"€=HfEE1T?fPEIHT“SPHGIHG="JS

PR IrrT“HIﬂlTTiEF‘ TR . MY

ITHFUTAS

IFR%=CHES S 2% s THEMZSEE

IFR%=CHESC 72 s THEH 1A 3
CLZ PEIMT:PRIMT"DIELECTRIC COMSTAMTS " FRIMT "ATR=1"

FRIMT"POLYTHEHE=2, 26" : FRIMT"FOAM POLYTHEME =1, 2"

PRIMT"TEFLON=2,1"

ITHFUT"EHTER CIELECTRIC COMSTRHT! (¥

FEETIEH

el 3 R 200200 0 0 0 2 00 0 0 00 2020 0 2 20 200 0 0

CLS:PRIMTEG, " ffddsddaiisiibeibiiinisrsiity
FRIWMTEZZ. " #F A+ +PE L4+ it

1 FPREIMTEEY, " & ke

1 FRIMTR2S, " & "

1 PRIMNTRIZZ. " & el

M PRIMTEIGE. " * il

G PRIMT®192, " % s
PEIMTEZ24 . "
PRIHT®:
FFIHTD;-F.

FREIMTR .
FREIWNTRZE2," i

FRIMTREZZ4, " A
FRIMTE4LE, " ?i#$¢ft##ttfi#l**1t##*########"

i“
,# n
gt

155 RETURH

Page 12 -AMATEUR RADIO,March 1987

Est/mat/ng the noise performance of an op
amp stage is easy with a little circuit analysis
and a short BASIC program to take care of the
maths. The program requires only two
resistance values and a figure for bandwidth
to compute the noise levels for six popular op

amps.

by PHIL ALLISON

There are several sources of noise in
an op amp stage which together account
for the .total background hiss level.
These are the op amp itself (particularly
the active devices employed in the input
stage),- the resistors used for gain set-
ting, and the noise generated by the
resistance of the signal source.

It must be appreciated that any resis-
tor has a self noise level caused by ther-
mal agitation of its free electrons. This
noise, commonly known as white noise,
is random and spreads across the whole
frequency spectrum. Its magnitude is
given by a simple formula:
where
En = RMS noise voltage

L = Boltzmann’s constant 1.38 x 10- 23

T = temperature in degrees K (degrees
C +273)

B = bandwidth of measurement

R = resistor value in ohms

For example: a 10k(} resistor at room
temperature and measured with a
20kHz bandwidth will generate a noise
voltage of 1.8uV. (Try some other
values on your calculator to get a feel
for the quantities involved).

The program presented here can be
used to select the best op amp for a
given application or to examine the ef-
fect on noise performance of design
changes to a circuit.

Before the program can be used, two
resistance values must be derived from
the circuit of the op amp stage in ques-
tion. These I have called source resist-
ance and input resistance. The first is

100 ELECTRONICS Australia, April 1987

just the value in ohms of the internal
resistance of the device generating the
input signal.

For example, for a 200-ohm micro-
phone use a value of 200 for the source
resistance, and for a high impedance
microphone (internal step-up trans-
former type) use a value of 50,000. If
noise testing is to be done with the
input shorted then use a value of 1 (one
ohm) as the program will not accept a
value of 0.

Input resistance

The input resistance has to be deter-
mined from the circuit of the gain stage
in question and here a little analysis is
needed. Note that the input resistance is
not the same as the input impedance for
the circuits of Fig.1 and Fig.2.

There are two common types of op
amp gain stages: (1) the inverting stage
as shown in Fig.1; and (2) the non-
inverting stage as shown in Fig.2. The
input impedance of the inverting type is
equal to R1, while the input impedance
of the non-inverting type is equal to Rin

and may be almost any value. The sig-
nal gains of these two stages are given
by the formulas beneath each diagram.

Don’t worry if your circuit has capaci-
tors in series with the input or feedback
ground (Fig.2) as normally these can be
neglected.

In Fig.1, the input resistance is equal
to Rl in parallel with R2. If R2 is more
than ten times R1, then just use the
value of R1.

For Fig.2, the input resistance is the
same as for Fig.l (ie, Rl in parallel
R2), but if Rin is less than ten times R1
then calculate Rin in parallel with R1
and R2 as well. If there is a resistor in
series with the input, add this to the
input resistance.

The figure for bandwidth can be any
value up to the circuit bandwidth. For
audio purposes, a figure of about 16kHz
is commonly adopted for specifications,

The program will, in a couple of sec-
onds, compute the equivalent input
noise (EIN) and noise figure for six op
amps. Other op amps can easily be
added to the list.

The EIN is a standard way of specify-
ing input stage noise as it is independ-
ant of the overall gain. If you multiply
the EIN figure by the gain of the stage,
then you will have the noise voltage ex-
pected at the output.

The noise figure is also calculated so
that the standard of performance of a
circuit can be seen at a glance. It com-
pares the stage in question with an
imaginary noiseless stage and quotes the
difference in decibels. A figure of 1dB
would be very good-and hardly worth
trying to improve upon. This figure is

INPUT

Fig.1: inverting op amp stage.
Gain = R2/RI.

Fig.2: non-inverting op amp stag:-_
Gain = (R1 + R2)/RI.

Left: this program was written for the
10 CLS:PRINT VZ300 computer but should work
20 PRINT'" PROGRAM TO CALCULATE NOISE" with little alteration on almost any
25 PRINT" IN OF AMPS" computer running BASIC. The
o e program runs each time return is
- pressed, so that you can enter new
40 PRINT values.-
50 INPUT" SOURCE RESISTANCE ";RS:PRINT:IFRS=OTHENSO =
60 INPUT" INPUT RESISTANCE ";RI:PRINT:IFRI=OTHEN6&0
70 INPUT" NOISE BANDWIDTH KHZ " ;BW:PRINT:IFBW=0THEN70
71 PRINT “
100 DATA 2.5E-9,4E-12,1E-8,5E-13,1.8E-8,1E-14 Below: these sample screen printouts
110 DATA 1.SE-8,1.7E-13,2.%2E-8,6E-13,4.7E-3,1E-14 show the results for six common op
115 RESTORE amps for various circuit conditions.
- . The program calculates both the
S208EORE=1TOC: REARIE BRI equivalent input noise (in microvolts)
140 KT=4.1E-21 and the noise performance (in dB).
150 ET=((EN*2+IN*2*(RS*24RI*2)+4*KT*(RS+RI))*BW*1E3)*0.&
160 IFI=1THENPRINT" NESS534 ";:GOTOZ00
170 IFI=2THENPRINT" RC4553 ";:GOTO200
i ' o SAMPLE SCREENS
180 IFI=3THENPRINT" TLO71 ";:GOTO200
190 IFI=4THENPRINT" LM201A ";:GOTOZ00
200 IFI=STHENPRINT" UA741C ';:GOTO300 SOURCE RESISTANCE 7 200
202 IFI=6THENPRINT" TLO81 ";:GQTO200 INBUT REE STAGIRE o
200 PRINTUSING"###.##";ET*1E6; :PRINT" UV ";
310 NS=(4*KT*BW*1E3*RS)*0.5 NOISE BANDWIDTH KHZ 7 16
320 NF=Z0*LOG((ET/NS))/LOG(10)
330 PRINTUSING'" ##.#";NF;:PRINT" DB" NESS534 0.51 Uv 7.0 DB
240 NEXTI RC4553 1.29 UV 15.0 DB
. .o - TLO71 2.29 UV 20.0 DB
SSOUBRIUTY sm=s==sss sneeSef o= ot LM301A 1.91 UV 13.4 DB
360 INPUT"RTN'";A:IFA=0SOUND21,1:G0TO10 UA741C 2.79 UV 21.7 DB
TLOS1 .95 UV 23.3 DB
. , SOURCE RESISTANCE 7 7000
independent of gain, bandwidth and sig- the result is qpote'd in microvolts. This
nal level. data appears in lines 100 and 110 as | INPUT RESISTANCE 7 1000
. . EIN voltage and EIN current figures in
Low "9'?9 tlps‘ volts and amps per Hz respectively. |NOISE BANDWIDTH KHZ ? 16
~ To optimise a design, the value of Line 320 computes the noise figure by
input resistance must be kept as low as dividing the result of line 150 by the
possible. For an inverting stage, this is poise of the source resistance and con- NESS34 1.56 UV 1.2z DB
limited by the minimum acceptable verting this to decibels. ROGESEl 1af 7 UVEE s .5 B
input impedance. There is no such When return is pressed the program grags St oR e
bl ith th : : . LM201A 2.29 UV 4.2 DB
problem with the non-inverting stage, runs again so that you can enter new M 2 4 DB
At UA741C 3.18 UV .4
making it the preferred type for low values. TLOS1 6.12 UV 131 DB
noise stages. Most op amps will drive Due to device variations and the use |===============z==z=z=z=z=z=z=====:
loads down to 1000 Ohﬂ}S or so, hence of averaged values in the EIN data, the
R1 plus R2 can equal this. The NE5534 computed figures are not precise but are | _ R By
can drive loads down to 600 ohms. close enough to measured results to |SOURCE RESISTANG e
k] = o
. Don’t worry about using expensive allow valid comparisons between circuits | ;ypyT RESISTANCE 7 {E4
low noise” resistors as these make no and op amps.
difference in an op amp stage where The program was written for a VZ300 NOISE BANDWIDTH KHZ 7 2.5
there is little or no DC across the resis- computer but should work with little al-
tors. Noise caused by a large voltage teration on almost any computer run- NES=34 2.99 UV @5 OB
across a resistor is called excess noise ning BASIC. ot TS e BN
and varies widely with resistor type. 671 231 uUv 11 DB
Using the program References LM301A 2,41 UV 1.5 DB
o Fai . Wirel UA741C 3.85 UV S DB
The formula for noise in the program ~ R.A. Fairs, Resistor Survey. Wireless TLOS1 3.17 UV 2.9 DB
appears in line 150. This sums all the = World, October 1975. ======================yz Z===:
noise sources involved using the pub- Walter G. Jung, IC Op Amp Cook-
lished data for each op amp in turn and book. i
2 of 2 ELECTRONICS Australia, April 1987 101

AM HEADINGS AND

QTH LOCATORS

ON YOUR MICRO

By Greg Baker

The LOCATOR program is a dual purpose program com-
bining a QTH Locator program and a Great Circle program.
The program demands as input either (a) the QTH Locator, or
(b) the latitude and longitude of the target station.

If the QTH Locator is provided as an input, the program
calculates latitude and longitude of the centre of the locator
square then the great circle bearing and path distances. If the
latitude and longitude of the target station are input, the
program calculates the QTH Locator square then the great
circle bearings and path distances.

The program has been written for and tested on an unex-
panded Dick Smith VZ-200 computer. The entire program is
written in BASIC and should be adaptable to most BASIC
versions.

QTH Locators

QTH Locators are an alternative to the use of latitude and
longitude for specifying the location of amateur radio stations
around the world. For this purpose, the earth’s surface is first
divided into 18 x 18 = 324 fields, each 20 degrees wide in
longitude and 10 degrees wide in latitude.

Each of these fields is then divided into 10 x 10 = 100
squares, each 2 degrees wide in longitude and 1 degree wide
in latitude. These squares are further sub-divided into 24 x 24
= 576 sub-squares of 5 minutes longitude by 2.5 minutes
latitude. Figure 1 shows how these fields, squares and sub-
squares are labeled.

From these labels, a six-character QTH Locator is formed.
Note that the two character field, square and sub-square
labels are longitude first, latitude second, and are labeled
consecutively from west to east for longitude and south to
north for latitude. :

The full six character locator has the form f1f2d1d2s1s2
where f1f2 is the alpha field locator, d1d2 is the numeric
square locator, and s 1s2 is the alpha sub-square locator. For
example, the author's QTH is at 35°24.4" South latitude by
149°57.3" East longitude, which corresponds to aQTH Loca-
tor of QF44X0.

It is not necessary to always use the six character QTH
Locator. If a coarser grid with less accuracy is satisfactory,
the first four character’s can be used. For less accuracy again,
use just the first two characters. Further details of the QTH
Locator system can be found in Tony Gilbert’'s 'Traffic’ col-
umn, ARA Vol 7, No 9, Page 5.

Great Circle Bearings And Distances
Great Circle bearings are the true bearings for beam aim-

ing. Due to the curvature of the earth, bearings obtained from
standard (mercator projection) maps are not accuracte over
more than a few degrees. Two bearings 180° apart are usual-
ly given — the short path bearing and the long path bearing.
Similarly, there are two Great Circle distances — that for the
short path and that for the long path.

For more details on Great Circle bearings, see articles in
ARA Vol 6, No 9, and ARA Vol 7, No 2, both available from
ARA Reprints (Back Issues Department).

Flowchart and Algorithms

Unlike some other locator programs, the main calculations

used here are neat and compact. The program incorporates
.extensive error checking, which is good for the VZ-200 but
“may not work on other systems.

Because the calculations are complex, great care should
be taken to type them is correctly. Statements to be particu-
larly careful with are those in lines 390, 400, 510 and 520.

The program flowchart is shown in Figure 2.
Originating Station

The program as it is written incorporates the latitude and
longitude of Mount Ainslie, Canberra, as the location of the
station from which the bearings are calculated. To function
correctly from any other location, latitude and longitude for
that QTH need to be inserted at lines 100 and 110
respectively.

Minutes of arc should be divided by 60 and added to the
degrees. Seconds of arc should be divided by 3600 and
added to the degree to give a decimalised latitude and longi-
tude. Then the latitude and longitude should be give 3 sign —
positive for north latitudes and east longitude; negative for

south latitudes and west longitudes.

20 — AMATEUR RADIO ACTION Vol. 9 No. 12]

AR | BR HR)
Q@ |Ba | — 1 Ha =I5 =
B]
-_.__'_I_l—___..' — e | — e — — — —
: I 3] 20°N :
AL | 8K iy | He IO | RE | 05w _ Fig. 1 — How the QTH Locator
1 .
| | \ T\.I system is calculated.
B i pl e
S s T
AA | BA HA
i80°W 140°ut 40"
a4 10°
2 59 1 128],
. | | . I i
EXAMPLE : [/S°28N 29°/3'w L [I J ! 6°
HAS OTH LOCATOR HESSTL |os] 15 | { g5] sr ..
2°
i sl i TR
R 1 50 Y
2° 4° te® [12° 18° 20°
4
;isl AX BX | -__l TIX L_ I
35’
275" AL | BL JL.
— TR X8
T TA XA
45! S50’ ns' 120’

AMATEUR RADIO ACTION Vol. 9 No 12 — 21

For example, a station at 33°565" South by 151°10" East
has a decimalised lztitude of -33 + 55/60 = -33.91667 and
longitude of +151 + 10/60 = +151.16667.

Alternatively, because the program allows the origin to be
changed while it is running — for use away from the normal
QTH for example — the user could type in their own QTH
every time the program is run, although it would be easier to
make the change permanent. Final output prints a new origin
reminder message if this option has been exercised.

Using The Program

On running the program, the user is asked whether s/he
wants to alter the latitude and longitude of their station. Enter
"Y' to choose. this option or any other character to bypass it.
If "Y' is selected, you will be asked to enter the new decima-
lised latitude and longitude of origin.

If a valid latitude and longitude is entered, the program
proceeds. Otherwise an error message is displayed for a
short period and the user is requested to re-enter the origin
coordinates.

Next, the program requests the target QTH name, fol-
lowed by the option to enter the QTH Locator or the latitude
and longitude of the location. The target name is truncated to
22 characters after entry and further truncated to nine char-
acters if the new origin option is chosen to allow room on the
printout for the new origin reminder message.

If the user chooses to enter a QTH Locator, a valid two,
four or six character locator must be entered before the
program will proceed to the Great Circle calculations which
will use the latitude and longitude of the locator field, square
or sub-square centre 2s the target location.

Similarly latitude and longitude, if entered, must be valid
before the program will proceed.

Once great circle bearings and distances are calculated,
the program prints results and asks the user to enter another
target.

A few typical outputs are shown in photographs accompa-
nying this article.

Warnings

The great circle section of the program produces errors if
the target is within 50 kilometres of the origin station (when it
wouldn’t be usual to use a great circle program anyway), or if
the target is close to either the north or south pole (although,
again, it wouldn’t be usual to use a great circle program to
point your beam due north or south anyway).

Note that ARA Vol 9, No 4, has an article on short range
beam headings for VHF and UHF enthusiasts.

Test Data

Table 1 shows program output data for the origin station
located at 35°16" South, 149° East as incorporated in pro-
gram statements at lines 100 and 110. This test data shold
be used to check the program before the data in lines 100
and 110 is changed for your QTH.

Copies of the program for VZ-200 can be obtained on
cassette from the author for $7:00 post-paid. Write to Greg
Baker, PO Box 93, Braidwood, NSW 2622. Comments and
suggestions (with an SASE for reply) can be sent to the same
address.

Debugged disk copies of the program modified for Com-
modore VIC-20, C-64 or C-128 can be obtained by
sending $10 or a blank formatted disk and $5 (includes post-
age) to High-Tech Media, 4 Renshaw St, Doncaster East
31089.

Diagram 2. Plcwclhart

10 Start
4
12C Alter Crigin? —e Yes —=1030 Enter new origin

i
Enter target —— Yes -———— lat/long valid? —eNo
name

— 170
\
200 Lknter target —eYes —=1030 Enter lat/long
lat/long?

240 ..;nt.er STH Y¥alid? ——— No

Locator
ves
Locator Valid? —=No 45C Foram QTH
lv locator
s .
38C Calculate lat/
long
; .
860 Frint lat/long,

locator

590 Calculate Bearinge,
Distances

!
920 Frint bearings,
dintancee

Yes «m—— 1000 n~ncther target? — No

127G knd

Target: QTH Locator: Short Path: Short Path:
Name True Bearing Distance

- Latitude Longitude

1. Buffalo FNO2MU 63°26° 15826 km
42°52°N 78°55'W

2. Hong Kong OL72CF 324°40° 7374
22°15'N 114°15°E

3n Falklands ~ GDOSBFL 162°37° 9963
51°30°'S 59°30'W

4. Auckland RF73JB 102°07° 2301
36°55°S 174°47'S

PROGRAM LISTING FOR VZ-200
0010 REM PROGRAM "LOCATOR"
0020 REM GREG BAKER, BRAIDWOOD, 2622
0030 DIM C(6),CB(3),CM(3).CT(3),L(2,3),M(6).N$(2),S(2),
T(2.2).TG(2) '
0035 DIM F$(2),G$(2),H% (2)
0040 DATA 65,82,10,48,57,1,65,88,0.04 1667

0045 DATA ""NORTH",”"EAST"",""SOUTH"*,""WEST"’
0047 Wg="""",

0050 FOR I1=1TO 3

0060 READ CB(l),CT(l),CM(I)

0070 NEXT |

0072 FOR I=1TO 2

0074 READ F3$(1),GS$(l)

0076 NEXT |

0080 REM ORIGIN STATION LAT/LONG

0090 REM INSERT YOUR OWN QTH HERE

0100 T(1,1)=-35.2667

0110 T(2,1)=149.1667

0120 CLS

0122 PRINTENTER ‘Y’ TO ALTER ORIGIN";:INPUT Y$

0130 IF Y$<>"Y"" THEN 170

0140 PRINT@192,"NEW ORIGIN LAT/LONG"’
0145 C$=""%NEW ORIGIN* "

0150 K=1 =

22 — AMATEUR RADIO ACTION Vol. 8 No. 12

0160 GOSUB 1030 , '
0170 CLS ,

0175 PRINT"TARGET NAME"";:INPUT T$
0180 TS=LEFTS(TS,22)

0190 FL=0

0200 PRINT@64, 'ENTER: '1° FOR TARGET QTH
LOCATOR"

0210 INPUT'" ‘2° FOR TARGET LAT/LONG'";Y
0220 it ¥=2 THEN 420

0230 IF Y=1 THEN 240

0235 PRINT@152,” "":GOTO 200

0240 PRINT@192, "LOCATOR'";:INPUT Q$
0250 FL=1

0260 X =LEN(QS)

0270 IF X=2 OR X=4 OR X=6 THEN 290
0280 PRINT@201,” ":GOTO 240

0290 FOR I=1TO 6

0300 C(l)=0: NEXT I

0310 FOR J=1 TO X

0320 C(J)=ASC(MIDS(Q$.J, 1))

0330 JU=INT((J+1)/2)

0340 REM TEST VALIDITY OF LOCATOR
0350 IF C(J)<CB(JJ) OR C(J)>CT(JJ) THEN 280
0360 C(Jj=C(J)-CB(JJ)

0370 NEXT J

0380 REM CALCULATE LATITUDE /LONGITUDE
0390T(1,2)=-

90+ C(2)% 10+ C(4)+ C(6)/24+CM(X/2)/2
0400 T(2,2)=-

1804 C(1)%20+C(3)%2 +C(5)/ 12 +CM(X/2)
0401 FOR I=1 TO 2

0402 IF T(1,2)<0 THEN H%(l)=2 ELSE H%()=1
0403 H%(l)=1

0404 T=ABS(T(L.2))

0405 L(I, 1) =INT(T)

0406 L(I,3}=(T-L{L. 1)) %60

0407 L(1,2)=INT(L(I.3)}

0408 L(1,3)=INT((L(1,3)-L(1,2))%x 60 +0.5)
0409 NEXT |

0410 GOTO 585

0420 PRINT@ 192, " TARGET LAT/LONG"
0430 K=2 0440 GOSUB 1030

0450 REM FORM TARGET LOCATOR

0460 FOR J=1 TO 2
0470 TG(J)=T(J,2)+90%J

0490 IF TG(J)= 180%J THEN TG(J)=TG(J}-0.0001
0500 FOR K=3 TO 7 STEP 2

0510 M(K-J)=INT(TG(J)/(J*k CM((K-1)/2)))
0520 TG(J)=TG(J)-M(K-J)*k JkCM((K-1)/2)
0530 NEXT K

0540 NEXT J

0550 Q$=""

0560 FOR I=1 TO 6

0570 Q$=Q$ +CHR$IM(I)+CBINT((I+ 1)/2))
0580 NEXT |

0585 GOSUB 860

0590 REM CALCULATE BEARING AND DISTANCE
0600 P=T(2,1)-T(2,2)

0610 PS=1

0620 IF P<0 THEN PS=0

0630 P=ABS(P)

0640 PM=0

0650 IF P> 180 THEN PM=1

0660 E=57.29578

0670 PI=3 141592654

0680 P=P/E

0690 PA=(90-T(1,1))/E

0700 PB=(90-T(1,2))/E

0710 2Z=COS(P) % SIN(PA) % SIN(PB) + COS(PA) % COS(PB)
0720 GOSUB 1250

0730 AB=AC

0740 SK=INT(6366.707% AB+0.5)

0750 LK =40000-SK

G760 2Z=(COS(PB)-

COS{PA)% COS(AB})/(SIN(PA) % SIN(AB))
0770 GOSUB 1250

0780 A=ACx%E

0790 A=ABS(360% (PS-PM)*-A)

0800 A1=INT(A)

0810 A2=INT((A-A1)%60+0.5)

0820 B=180+A

0830 IF B> =360 THEN B=B-360

0840 B1=INT(8]

0850 B2 =INT((B-B1)%60+0.5)

0855 GOTO 920

0860 REM PRINT RESULTS

Q- pc s .

AMATEUR RADIO ACTION Vol 9 No 12 — 23

0870 CLS

0880 PRINT 'TARGET: ";T$

0885 IF LEN({C$)>0 THEN PRINT@17,C$%
O890PRINT@64, 'LAT:
“:L(1,1);°D,L(1,2),°M L1, 3),°S

0895 PRINT@86,F$(H%(1))

O900PRINT

@96, 'LONG:"";L(2,1);"'D"";L(2,2);""M"";L(2,3);"'S *";
0905 PRINT@118,G$(H%(2))

0910 PRINT'LOCATOR *',Q%

0915 RETURN

0920PRINT@224,""SHORT PATH:
BEARING'';A1,"'D"";A2;""M"’

0930 PRINT" DISTANCE'";SK;"* KMS"* .
0940 PRINT 'LONG PATH: BEARING'";B1;"'D'";B2;,""M"’
0950 PRINT®" DISTANCE'';LK;"" KMS"’

0960 IF FL=0 THEN 1000

0970 PRINT'LAT,LONG, BEARINGS AND DISTANCES
ONLY""

0980 PRINT"APPROXIMATE BECAUSE LAT AND
LONG"™

0990 PRINT"CALCULATED FROM LOCATOR""

1000 PRINT@480,'ENTER 'Y’ FOR ANOTHER
TARGET ";:INPUT Y$

1010 IF Y$=""Y"* THEN 170

1020 GOTO 1270

1030 REM INPUT LATITUDE/LONGITUDE

1035 S(1)=0: S(2)=0C : .
1040 PRINT@224, LATITUDE? DEGS'';:INPUT L(1,1)
1041 INPUT" MINS'";L(1.2)

1042 INPUT" SECS’’;L(1,3)

1043 INPUT* N/S "";N$(1)

1050 IF N$(1)<>"'N"" THEN 1070

1060 S(1)=1: GOTO 1080

1070 IF N$(1)=""S"" THEN S(1)=-1
1080 INPUT'LONGITUDE? DEGS'*;L(2,1)
1081 INPUT' MINS'";L(2,2)

1082 INPUT'* SECS'";L(2.3)

1083 INPUT" E/W "";N$(2)

1090 IF N$(2)<>""E"" THEN 1110

1100 S(2)=1: GOTO 1120

1110 IF N$(2)=""W'* THEN S(2)=-1

1120 FOR I=1TO 2 -

1130 IF S(I)=0 THEN 1160

1132 H%(l)=1 A

1134 IF S(l)<O THEN H%(l)=2

1140 T=90+(I-1)% 90

1150 IF L(I,1)>=0 AND L(l,1)<=T THEN 1180
1160 PRINT 'ERROR:*";L(l,1);"'D"";L(1,2);""M"*;L(1,3);"’S
"INS()

1170 PRINT “TRY AGAIN"

1172 FOR V=1 TO 1500

1174 NEXT V

1175 PRINT@224,W$

1176 FORV=1TO 7

1177 PRINT W$

1178 NEXT V

1179 GOTO 1030

1180 FOR J=2 TO 3

1190 IF L(I,J)<0 ORL{I,J)>60 THEN 1160
1200 NEXT J

1210 T(.K)=L{l,1)+L(,2)/60+L(1,3)/3600
1220 T(I,K)=T(I,K)%S(l)

1230 NEXT |

1240 RETURN

1250 AC=-ATN(ZZ/SQR(1-ZZ%22Z))+P!/2
1260 RETURN

1270 END

24 — AMATEUR RADIO ACTION Vol. 8 No. 12

Towards a VZ-Epson printer

patch

Larry Taylor

Part 1

Fed up with your clackerty old printer and long for an upgrade to
one of the popular Epson or Epson-type dot matrix printers?
Compatibility with the VZ has always been a problem - until now.

FED UP with your clackerty GP-100, and its less than per-
fect print quality? Do you long to upgrade, but know that
whatever you choose, it won't be totally friendly towards your
vz?

Are you the owner of an Epson-type printer, but suffer frus-
tration, as I did, at its lack of compatability? If so, then take
heart, there is hope. The answer is a printer patch, that is,
a program specifically written to take the place of the exist-
ing ROM routines. In this case, the aim is to make the VZ
fully compatible with Epson-type printers. Recently, after-
many hours spent rzading and experimenting, I succeeded
in producing just such a program.

Having first decided to take the plunge and purchase a VZ
computer, I developed a very great need, some short time
later, to be able to obtain a printout of my programming ef-
forts. On close examination of available finances, I was left
with a choice between the Seikosha GP-100, a slow, noisy
machine featuring an unattractive print style, and the BMC
BX-80, a noticeably quieter, faster printer, possessing sever-
al attractive fonts.

Although a seemingly easy decision, I was immediately
faced with a dilemma. The former, whilst initially unattrac-
tive, especially so to anyone with sensitive hearing, had two
very desirable features: namely, the ability to print the VZ’s
inverse and graphics characters, in addition to providing,
via the COPY command, a dump of the HI-RES screen. These
two factors very nearly persuaded me to choose the GP-100,
but, after much deliberation, I opted for the superior print
quality of the BX-80. In so-doing, I resigned myself to hav-
ing to go without the former’s obvious advantages.

No one had at this stage even remotely hinted that I could
have the best of both worlds by means of a software patch.
Hindered by a lack of information and minimal understand-
ing of computer and printer operations, I perservered with
the rather primitive approach of removing all inverse and
graphics characters from programs before doing a printout.

A start

Desperate to overcome this huge waste of time, I first began
to deal with the problem of printing graphics characters. I
realised that my printer was capable of dot graphics and that
it should be able, whilst in this mode, to reproduce the shapes
I desired. My early efforts, however, ended in frustration as
the VZ steadfastly refused to interpret my data correctly. Only
when I discovered that I could send the data directly out the
ports, thus bypassing the VZ's printer driver routine, did I
achieve any success.

Listing 1 gives an example of how this was accomplished.
By referring to the table below, you may change the graph-
ics block data in the listing to enable any of the other graph-
ics charactrs to be printed. Later it will become clearer how
the data to print each block was calculated.

86 — Australian Electronics Monthly — May 1987

GRAPHIC BLOCK DATA

HEXIDECIMAL DECIMAL
128 { 00 , 00 o, O
129 | oF , 00 1S, O
130 | oo , oF o, 15
131 | oF , oF 15 , 15
132 | Fo , oo fz30 , o
133 | FF , 00 255 , ©
134 | FO , OF (240 , 15
135 { FF , oF J}255 , 15
136 | oo , FO 0 ,240
137 | oF , FO 15 ,240
138 | oo , FF 0 ,255
139 | oF , FF 15 ,255
140 | Fo , FO 240 ,240
141 | FF , Fo [}255 ,240
142 | Fo , FF f240 ,255
143 | FF , FF §255 ,255

Being an avid user of Steve Olney’s Extended Basic, I used
my new-found knowledge to write an assembly routine,
which linked into the listing routine of his program. It sim-
ply checked for graphics and inverse characters. Graphics
characters were printed and inverse ones changed to non-
inverse. Useful, but not totally satisfactory. On the way I had
independently developed my own table of data (above), to
print the graphics-blocks, only to later discover that there
exists in the VZ's ROM a set of data for graphics characters
and another for inverse.

The graphics table occupies addresses from 02AFH to
02CEH, whilst the inverse data commences at 3894H and
ends at 3CD3H. The graphics shapes are stored in two-byte
form and the inverse characters in five-byte blocks. Their ex-
istence makes it a simple enough matter to expand on the
program in Listing 1 and print the graphics blocksusing the
ROM data instead of our own, as in Listing 2. The sa me may
be done with the inverse characters and Listing 3 shows how
this is accomplished. Unfortunately, you will notice that the
resultant characters, when printed, are in fact upsid e down.
To understand why this occurs, it is necessary to offer a brief
explanation of the differences between the code yali1es used
to control firing of the pins in the printheads of Epson-type
printers, and those of the GP-100 family.

The Epson-type printer

Printers of the Epson-type have eight addressable pins, while
the GP-100 has the equivalent of seven pins only. In addi-
tion, the value 1, which fires the bottom pin on an Epson
printer, actually triggers the top pin on the GP-100. The dia-
gram below illustrates the differences.

COMPARISON OF
PIN CODE VYAL UES

GP-100 EPSON

128 L

64 s

32]

16 L

8 w

4 =

2 |

1 W

To calculate the code which is required to produce a par-
ticular dot pattern we simply have to add up the values of
the corresponding pins. The representation of the graphics
block, CHRS$(137), can be used to demonstrate how this is
done. You may recall that the data values used in Listing 1
to reproduce this particular character were 240 and 15. No-
tice how these codes correspond to the totals at the base of
each column in the diagram. If we examine the first column
on the left, we can see that only the top four pins have been
fired. By totalling vertically the values assigned to those pins,
we arrive at the sum of 240. The same procedure is used to
determine the Epson compatible code foreach of the remain-
ing columns.

GRAPHICS BLOCK 137

128
64

BOE) ENE Soucy N

PR RNEA AN MR

32 it GBS N N

16 Cupsil Shing SAA WRe
8 L F F] |
4 1 ¥
2 MEED (DGR UEAN RN
1 WSRE! MENG NNk NN

240240240240 13 15 13 15

It can be done

Nevertheless, data which has been prepared primarily for
the GP-100, as is the case with the ROM tables, will produce
inverted images if sent to an Epson printer. It is necessary,
threfore, to convert the data before it can be used. Adding
Listing 4 to Listing 3 will produce the desired result. I
wouldn't however, advise any of you to hold your breath
whilst waiting for the data to be printed. Hence, [have
provided Listing 5, an assembler program, which effects the
same result, only much more swiftly.

Having now managed to make the characters appear in
their more conventional form, a closer examination of them
will reveal numerous inaccuracies. Some, such as the 3 and

5, are more noticeable than others, but no less than a dozen
of the characters are flawed. After progressingso far, this
is a disappointing development but one whic h will prove,
later, to be not insurmountable. In the interim, we need to
explore further how we might utilise our somewhat imper-
fect data.

Fortunately, the designers of the ROM foresaw the possi-
bility that potential users may want to use a different printer.
As a result, a vector has been used to point to the location
of the printer driver. All output to the printer is directed via
a driver routine, which, among other things, checks for con-
trol codes and keeps track of line feeds. In the VZ, a block
of the communications area of RAM from 7825H to 782CH
has been set aside for printer operations, allowing temporary
storage of values such as the number of lines printed. Of
greatest interest to us is the contents of 7826H-7827H. This
is the start of the driver routine, and the cause of our

_problems, because it is geared to expect that owners of VZeds

will be using GP-100 type printers. However, since the previ-
ous address lies in RAM, it is possible to insert a pointer to
our owndriverroutine at thislocation. Once accomplished,
all future LPRINT and LLIST commands will be directed,
ultimately, to our own printer routine.

We have now proceeded part way to installing a valuable
routine for owners of Epson-type printers, but we are still
unable to make use of the COPY command. The primary ad-
vantage of which is that it allows a dump of the HI-RES
screen to be made to the printer. Implementing this very
desirable feature will prove to be somewhat more
challenging.

LISTING 1 PRINT A SINGLE GRAFPHICS BLOCK

100
101

REM HUHBHHBHHEESHBRRRRANNARARRNNNRRRRNEY
REM # PUT PRINTER IN GRAPHICS MODE #

102 REM HHHHHHHANARHHSHIRRRRASNERARRRENNRARS
110 LPRINTCHRS (27) ;CHR$(73) ;

120 FOR T=1 TO 2

130 READ D:GOSUB 5S10

140 NEXT T

200 REM HHHHHHRHBAHASHRAHABHBBARRRNCRARNRS
205 REM # READ EACH DATA VALUE IN TURN #
210 REM # AND THEN PRINT IT FOUR TIMES #
215 REM HHHHHRHHHHHBBARREHHBAAARRNNNRARRNAS
220 FOR N7=1 TO 2

230 READ D

240 GOsSuUB S10:G0SUB S10

250 GOSuUB S510:G0OSUB S10

400 NEXT N7

410 LPRINT:END

SO0 REM HHHHHHHHABHHBHHBARRRENNBRARRINERGARS
S01 REM # OUTPUT TO PRINTER VIA THE PORTS #
SO02 REM HHHHHHHHHRAABABHIRARRRAAARIIININISHA
S10 IF INP(0)<>254 THEN GOTOS10

520 OUT 13,D:0UT 14,D

S30 RETURN

SA0 REM HHHHRHHARHHBBHBHNRABABIIRNRRRRAARE SN
545 REM # NUMBER OF BYTES TO BE PRINTED #
5SSO REM # IN LOW BYTE, HIGH BYTE FORM #
SSS REM HHHHHARARRARBBHHERRRARAABRNNIRRRRE A
560 DATA 8,0

S65 REM HHHHHBHRHAAABAHHBNARARAARRIINRIRAE RS
S70 REM # GRAPHIC BLOCK DATA #
S7S5 REM HHHHHHHERHAAAABINNNRRRAAAARINNN N HEA

580 DATA 240,15

LISTING 2 : PRINT THE ROM GRAPHICS BLOCKS

100
101
102
110
120
130
140
150
151
152

REM HHHHHRHBHRBANBHARARRNNNSRARRRNN IR BE
REM # PUT PRINTER IN GRAPHICS MODE #
REM HUHHHHARRHHBBRRRRNNNIRRRRRINNNRRR Iy B8
LPRINTCHRS$ (27) ;CHRS (75)
FOR T=1 TO 2

READ D:GOSUB 510
NEXT T
REM HHEHHHHBHRHHHHBANBENHBARRIANRRRRB g A8
REM # LOCATION GRAPHICS TABLE O2CEH #
REM HHEHRHHHBHRRENHBRRRNNNBRARNNNRRR NSy #7

May 1987 — Australian Electronics Montply — 87

>

160
200
205
210
215
220
230
240
250
260
265
270
275
280

410
S00
S01

502
S10
520
530
540
545
550
SSS
560

M=687
REM HHHHHHHHHHHHHHHHHHHHHHHRHHHAAAAHAEEY
REM # READ DATA FOR GRAPHICS BLOCKS #
REM # AND PRINT EACH VALUE 4 TIMES #
REM HHHHHHHHHHAHHHBHHHHRHEHHHHAAERAERAES
FOR N%=1 TO 32

D=PEEK (M) =128 :M=M+1

GOSUB S10:GOSUB 510

GOSUB S10:GOSUB 510
REM HHHHHRAHHRAAANAH AR H AR N R ARRHRRA Y
REM # THIS LINE SEPARATES CHARACTERS #
REM # FROM EACH OTHER BY A DOT WIDTH #
REM HHHHHAHHHHHHHHHHBHHHHRAERAARRAERAEES

IF N%/2 = INT(N%/2) THEN D=0 :GOSUB 510
NEXT N%
LPRINT:END
REM #HHRHAARAANAAHARHRRRANR AR AR AR AR
REM # OUTPUT TO PRINTER VIA PORTS #
REM HHHHHHHHHHHHHHHHHAHHRHUHAERRBRRANRES
IF INP(0)<>254 THEN GOTOS10
OUT 13,D:0UT 14,D
RETURN
REM HUHHHHHHHUHHANRH NN NN NR AR HR RS
REM # NUMBER OF BYTES TO BE PRINTED #
REM # IN LOW BYTE, HIGH BYTE FORM 4
REM HHHHHHHHHHHHHHHHAHHHHHEHHHHHRHAAAAAS
DATA 144,0

LISTING 3 : PRINT THE ROM INVERSE CHARACTERS

LISTING S

: PRINT THE ROM INVERSE CHARACTERS

100
101
102
110
120
130
140
150
151
152
160
200
201
202
210
220
230
231
232
240
250
339
340
341
350
360
370
400
410
S00
S01
502
S10

S30
S35
540
SS0
555
560

LISTING 4 : CONVERT THE DATA FOR THE EPSON PRINTER

REM HHHHHHHHAHHHHHAHHHAHHHBHAHHRAERAERAES
REM # PUT PRINTER IN GRAPHICS MODE #
REM #HHHHAHANHARANHANANHARANH AR AN AR AN A
LPRINTCHRS (27) ;CHR$ (75) ;
FOR T=1 TO 2

READ D:GOSUB S10
NEXT T
REM HHHHHHHHHHHRHHHAHHRBHREHHHHRERRARAES
REM # LOCATION OF INVERSE TABLE 3IB94H #
REM HHHHHHHBHHHHHHHHHBHHHHABUHAURASRAERS

M=15252
REM HHHHHHHHHHHHAAHAAAAAAHAHAHAAAAAAAAAS
REM # NUMBER OF INVERSE CHARACTERS #

REM HHHHAAAAARAAAAHAHAARARABAHAAAAAAAARARS
FOR N%=1 TO 64

D=255:G0OSuUB 510
REM HHHHHHHAHHHHHHHAHHHHAAAAAHAAARRRNRNY
REM # NUMBER OF BYTES PER CHARACTER #
REM HHHHHHHHHHHHAAHAAAAHAHAHAAHAHAAAAAAS

FOR R%Z=1 TO S

D=PEEK (M) : M=M+1

REM HHHHHHAHAHAAAHHAHHRARAAHAAHAAAAARARS

REM # PRINT ONE COLUMN #
REM HHHHHHHHHHHAHHHHAHAHAHAHAHAAHAAAAANS
GOSuUB 510
NEXT
D=255:G0SuB 510
NEXT N7

LPRINT: END

REM HHHHHHHHAHAAAHARAAAAAAAAAAARARAARANRS
REM # OUTPUT TO PRINTER VIA THE PORTS #
REM HHHHHHHAARASHHHAHHHEHAHAAAAHAAAAAAARS
IF INP(0)<>254 THEN GOT0OS10

OuT 13,D:0UT 14,D

RETURN

REM HHHHHHHAHHARHARRHHARAHARRAHARREAAAES
REM # NUMBER OF BYTES TO BE PRINTED #
REM # IN LOW BYTE, HIGH BYTE FORM #

REM HHHHAAHHHHHAAAHAAAAAAAAAARARARARARNY
DATA 192,1

260
261
262
270
280
290
300
310
320
330

88 — Australian Electronics Monthly — May 1987

REM HHHHHHAHHAHAHAHHAHHHHARRHAAABAARREAS
REM # CHANGE CODE FROM GP-100 TO EPSON #
REM HHHAHHHHAAAAHARHHHEHAHHEAAAAAARARS

IF D=189 OR D=255 THEN 320

v=0:E=0

FOR F%=7 TO O STEP -1

P=27F%:1F D<P THEN 320

E=E+2”~V:D=D-P

V=V+1

NEXT:D=E

0001 ;HHHHHHHHHHHARHAAHGARY
0002 ;# PUT PRINTER IN #
0003 ;# GRAPHICS MODE #
0004 FHERHHHHHARHAARHHAARAN
0005 LD A,27

0006 CALL 3ABAH

0007 LD A,7S

0008 CALL 3IABAH

0009 LD A,192

0010 CALL 3ABAH

0011 LD Al

0012 CALL 3ABAH

0013 ;HHHHHHHHRHHARRUAAAES
0014 ;# LOCATION OF THE #
0015 ;# INVERSE TABLE #
0016 ;HHRHHHARRAHHAAAAAAAS
0017 LD HL ,3B94H

0018 ;HHHHHHARAAHHAAARAEAS
0019 ;# NUMBER OF INVERSE#

0020 ;# CHARACTERS "
0021 ;HHHHHHHAHHAHHAHAREASY
0022 LD B,b4

0023 NEXT PUSH BC

0024 LD A,255

0025 CALL 3ABAH

0026 ;HHHHHHAARAARHHARARREY
0027 ;# NUMBER OF BYTES #
0028 ;# PER CHARACTER #
0029 ;HHHHHHHHAAARHAAAARES

0030 LD B,S
0031 PRNT LD A, (HL)
0032 CALL CVRT
0033 CALL 3ABAH
0034 INC HL
0035 DINZ PRNT
0036 LD A,255
0037 CALL 3ABAH
0038 POP BC
0039 DJINZ NEXT
0040 RET

0041 ;He#HHAHAARARARAARAARS
0042 ;# CHANGE CODE FROM #
0043 ;# GP-100 TO EPSON #
0044 ;HHHHHHHHHNAHAHAARAAS
0045 CVRT PUSH BC

0046 LD B,8

0047 ROTA RR A

0048 RL C

0049 DJNZ ROTA

0050 LD A,C

005 POP BC

0052 RET A

— from page 30

chromium to resist corrosion) and a solid “beta alumina’
electrolyte separates anode and cathode. The cell is sealed
and filled with argon.

During discharge, sodium ions pass through the electrolyte
from anode to cathode, forming sodium sulphide at the
cathode, the reaction generating the current. Recharging is
achieved as with other storage batteries, by passing a current
through it in reverse. One problem, though. These cells will
only deliver power when operated above 270 degrees Celsius.
They have an operating temperature ceiling of 410 degrees C.
Theymustbe heated to ‘start up’and to maintain them within
the operating temperature range, they have to befully charged
and then at least 80% discharged each day. If unused for nine
hours, temperature falls below the 270 degrees C.

Sodium-sulphur cells exhibit a terminal voltage of around
2 V and may last some five years or 6000 charge-discharge
cycles, which betters the typical lead-acid battery life cycle.
In addition, its terminal voltage remains constant until it
reaches about 70% of its discharge capacity before tapering
off.

Suggested application encompass commercial vehicles
such as delivery vans and buses, and military submarines.
Satellite applications are also suggested as sodjurn-sulphur
cellsare only 20% of the weight of equivalent NiCad batteries
of the same Ah output. & '

3ol 3

A VZ-Epson printer paich
— the search continues ..., o

Part 2

IN THE PREVIOUS instalment, printing of the VZ’s inverse
and graphics characters had been made possible. At this
point, the ideal enhancement to our printer patch would be
to enable the VZ’s COPY command to function correctly
when matched with an EPSON type printer. This should be
possible, but we must first examine why the usual means for
intercepting BASIC key words, during programme execution,
won’t work in the case of the COPY command.

The VZ’s ROM owes much to that used in the earlier
TRS-80 computers. The COPY routine, however, is one of
a number of additions which greatly enhance the VZ’s capa-
bilities. As such, it contains none of the DOS exits, which
are to be found in the older sections of the ROM. These ex-
its, or "‘vectors”, are calls to an area in the communications
area of RAM, and provide the means by which some BASIC
commands may be altered or redirected. Since the VZ DOS
makes no use of these vectors, none have been provided in
the newer sections of the ROM. My initial hopes dashed, I
began to investigate the method used to integrate the DOS
into the VZ’s operating system. In doing so, I uncovered an
alternative vector, one which would make it possible for us
to not only intercept the COPY command, but also open the
door to further enhancements to the VZ’s BASIC.

How so?

It is important to understand, initially, why this type of
modification is possible. When we write a BASIC
programme, we are creating what we hope will be a precise
set of instructions. Unfortunately, before the computer can
understand and respond to our commands, each instruction
in turn has to be painstakingly translated or intrpreted. This
is the reason for BASIC’s slowness, and it can really only
be effectively overcome by having the programme translat-
ed or compiled prior to execution. Yet, because a BASIC
programme is interpreted as it runs, it is possible that addi-
tional commands may be added to the language, provided
they are intercepted and executed prior to reaching the VZ's
own interpreter. This is precisely what happens when a disk
operating system is added. New commands enabling disk
operations to be performed; supplementing the existing BAS-
IC. In the case of the COPY command, we are seeking to
redirect it to a routine compatible with EPSON type printers,
and on completion, have it return asthough all had proceeded
normally.

As [undertook to produce this extension to the patch, I
found myself venturing much further than I had originally
intended. The project involved modifying the existing ROM
routine, as well as enhancing the COPY command to pro-
vide for a second screen dump routine of my own design.
Furthermore, I allowed for a copy of the LO-RES screen
without the usual linefeeds. I also sought to eliminate those
unfortunate flaws in the inverse character data. Listing 1,
which was kindly supplied by Bob Kitch, enables a closer
examination of the inverse characters held in ROM, by dis-
playing them on the HIRES screen. By relocating the ROM
table to RAM at the top of memory the necessary modifica-
tions to the data have been made possible.

74 — Australian Electronics Monthly — June 1987

VZ ROM, PRINTER PATCH MODIFIED TABLE

(note changes to underlined characters)

The accompanying illustration allows a comparison to be
made between the ROM characters, at top, and those in the
shape table addressed by the printer patch. Incidentally,
should you decide that you still don't like the look of the
amended characters, it is possible, using the same approach,
to either further refine them, or even custom design a com-
pletely new set.

Inspired at having overcome this obstacle, and because I
have written a number of programs using an Extended BAS-
IC, I wanted the routine to be able to list those commands,
which would not normally be recognised. The final aim was
to deal with the printer’s unimpressive performance, sig-
nalled by a dramatic decrease in speed, each time it had to
print a graphics or inverse character. The solution I chose
to minimise these delays was to feed the data into a section
of RAM, which would act as a collection area or buffer, pri-
or to printing. A discussion in detail of how each of these
refinements was implemented would only serve to compli-
cate what is otherwise a relatively straightforward procedure.
I have elected, instead, to demonstrate how tointer cept and
enhance an existing keyword on a smaller scale by using
another of the VZ's commands.

510 5

Enhanced CLS

Tandy’s Colour Computer has an enhanced CLS command
which enables the user to clear the screen to any one of nine
background colours. The syntax is CLSn, where n may be
a number in the range 0-8. To illustrate how enhancements
to the existing language can be accomplished, this command
will be necessary to examine further how the VZ operates.

When a BASIC program is RUN, control passes to a
machine language ROM routine, the Execution Driver at
1D5AH, which scans each line of the BASIC programme as
it comes to it and begins to translate it. Part of the transla-
tion process involves looking for tokens. These are values
in the range 128-250 (80H-FAH) that take the place of BAS-
IC reserved words e.g: CLS = 132 (84H). Once the word has
been identified and checked for correct syntax, control is
passed to the corresponding ROM routine before returning
to continue the translation.

On power-up, the address of the routine which examines
each byte in a line of BASIC, is stored at 7804H. This is the
vector hinted at earlier, and in a non-disk VZ it will normal-
ly contain a pointer to the RST 10H routiné at 1D78H. Be-
cause this vector is in RAM it can be easily changed. This
was done so that at a later stage the DOS could be included.

At least three different versions of the VZ DOS could be
included that I am aware of, and two of these display the
same version number on power up. Consequently, the only
fixed location common to all three versions is a jump table
commencing at 4005H. This makes it difficult to refer to an
actual address within the DOS, where command processing
is carried out. However, since all processing must be chan-
nelled via the above-mentioned vector, a peek at this address
will uncover the whereabouts of the DOS interpreter. A close
examination of this region of the DOS will reveal how the
added disk commands are interpreted and implemented. This
information will enable us to introduce into the system an
enhanced command of our own choosing. The trick is to en-
sure that, as far a the VZ’s interpreter is concerned, nothing
unusual has happened.

Theaccompanying assemblylanguage programme in List-
ing 2, with its associated comments, shows in greater detail
how this is accomplished. If you do not have access to an
Editor Assembler, Listing 3 is a BASIC version, which pokes
the routine into memory. Having adjusted the top of memory
pointer, the address at 7804H is stored and replaced by our
own. The programme then locates the new routine at the top
of the memory. Now each time a byte is to be examined dur-
ing execution it must first pass through our checkpoint. Once
the origin of the call is established, the routine looks for the
CLS token, 132 (84H).

Only when it has been located does the routine proceed
to examine the next byte. This is checked to see if it lies in
the range 0-9. Once it has passed this test, the clear screen
routine is implemented, after first calculating the appropri-
ate value, with which to fill the screen. You will notice that
not only is it necessary to check for the new command, but
also to provide the routine which implements it. In this case
a simple block load to the screen has been used. Control is
then returned to the ROM processing routine, which prepares
to examine the byte following ournew command. So, as far
as the VZ knows, everything is continuing normally. Tricky
isn't it?

The VZ will now respond to the CLSn command, when en-
tered, either directly from the keyboard, or from within a pro-
gram, with one exception. For some unexplained reason,
during IF-THEN-ELSE processing the ROM accesses the byte
examine routine at 1D78H directly, instead of viaa RST 10H
call. This means there is no efficient method for our
programme to intercept the new command, when it is used
in an IF-THEN-ELSE statement. The problem can best be

29(‘3.

LISTING

10 9500000000000 000000000 00000000000

20 ss+s DISPLAY INVERSE CHARACTER <=
30 sas SET IN ROM aes
20 sas AS USED BY DOT MATRIX ses
so * sve PRINTER .ss
zo| - R. B. KITCH 27/1/86 .es
70 - e
80 °

100 "WHEN INVERSE CHARACTERS ARE SENT TO A DOT MATRIX PRINTER
110 "THE PRINTER SHIFTS TO GRAPHICS MODE AND REGUIRES A ROUTINE
120 "TO SUPPLY THE APPROPRIATE SHAPES TO THE HEAD. (NORMAL

130 'CHARACTERS ARE HELD IN THE PRINTERS ROM)

140 "IN THE VZ COMPUTER A TABLE OF SHAPES IS LOCATED AT

1S5S0 '3B94H TO 3CD3I IN ROM. THERE ARE 64 CHARACTERS, EACH USING
160 'S BYTES TO DEFINE THEIR GRAPHIC SHAPE. THE SHAPES MAY BE
170 'DECODED AND OUTPUT TO THE SCREEN AS 1S DONE IN THIS

180 'PROGRAM. NOTE THAT THERE ARE SOME ERRORS IN THE ROM.

190 ‘THE_S BYTES DEFINE A S BY 8 DOT MATRIX WHICH IS THE SHAPE
200 'OF THE CHARACTER, WHICH INCIDENTALLY ARE NOT ORDERED

210 'ACCORDING TO THE ASCII CODE.

220 'THE FIRST BYTE DEFINES THE LEFT HAND EDGE OF THE CHARACTER-
230 "WHICH IS THE FIRST PRINTED DURING A PASS OF THE PRINTER
240 °'HEAD. IN TANDY PRINTERS THE MSB 1S THE LOWERMOST PIN OF THE
250 'HEAD AND THE LSB IS THE UPPERMOST PIN. THE PINS ON EPSON
260 'PRINTER HEADS ARE ARRANGED IN THE OPPOSITE SENSE. THIS

270 'REGUIRES THAT THE BITS IN EACH BYTE BE REVERSED.

P IR R R T T -

290 -

300 DIM MKZ(7) : #+«#VECTOR OF BIT MASK VALUES - POWERS OF 2

310 DIM BT%Z(7) : +++«VECTOR OF DECODED BITS FROM ROM VALUE.

320 °

330 ‘#++FILL MASK VECTOR WITH POWERS OF 2 FOR DECODING.

340 FOR 1%=0 TO 7 :MKZ(1%4)=271% :NEXT 1%

350

400 ‘#++INITIALIZE PARAMETERS - MAY BE CHANGED TO VARY SCREEN.

410 CC%=4 : "##+CHARACTER COLOUR. 1-4)

420 BC%=2 : ‘#«+BACKGROUND COLOUR. (1-4)

430 CS%=0 : ‘#++COLOUR SET. (0-1)

440 CWZ%Z=3 : ‘#+e«COLUMN WIDTH BETWEEN CHARACTERS.

450 SP%Z=16 : "##«ROW SPACING FOR CHARACTERS.

460 HS%Z=0 3 "+++STARTING HORIZONTAL POSITION ON HI-RES SCREEN.
470 VP%=3 : '*»aSTARTING VERTICAL POSITION ON HI-RES SCREEN.
480 HMZ=127 : #++MAXIMUM HORIZONTAL POSITION. (0~-127)

490 °

600 ‘#+#SET UP MAIN LOOP TO STEP THROUGH ROM FROM 3B94H-3CD3.
610 BK%Z=0 :"+++BYTE COUNTER FOR EACH CHARACTER.
620 HP%=HS%Z : '##«SET HORIZONTAL POSITION TO START
630 MODE (1) :COLOR,CS% s "*##SET HI-RES SCREEN AND COLOR SET.
640 SM%=15252 : '«+#START OF SHAPE TABLE

650 EM%=15571 : ‘#««END OF SHAPE TABLE

660 FOR AD%=SM%Z TO EMZ : '*#e*ADDRESSES FOR SHAPE TABLE.

670 DV%=PEEK (AD%) : "#+«DECIMAL VALUE READ FROM TABLE
680

700 "++«DECODE THE INDIVIDUAL BITS OF DVZ AND STORE IN BT%Z().
710 's+«THE MASK VALUES IN MK%() ARE "ANDED" WITH THE VALUE.

720 ‘#+«THE RESULT STORED IN BTZ() 1S THE "COLOUR" OF THE BIT.
730 FOR 1%= O 10 7 : "#««PROCEED FROM LSB TO mMSB.

740 IF DVZ AND MK%(1Z) THEN BT%(1%)=BC%Z ELSE BT%Z(1%)=CC%
750 NEXT 1%
8uo

810 '#++CHECK THAT THERE 1S ENOUGH ROOM TO PLOT CHARACTER.

820 IF BK%=0 AND HMZ~-HP%<4 THEN HP%=HS% :VP%Z=VP%Z+SP%: '«NEW ROW
830 BK%=BK%+1 : "+«+INCREMENT BYTE COUNTER.

840 -

900 "++»QUTPUT BYTE TO SCREEN.

910 FOR 1%=0 TO 7

920 COLOR BT%(I%) : "##eSET COLOUR OF BIT.
930 SET (HP%,VP%+1%) 3 e««PLOT BIT.

940 NEXT 1%

950

1000 "e««PREPARE FOR NEXT BYTE.

1010 HP%=HP%Z+1 : "#«+INCREMENT HORIZONTAL POSITION.
1020 IF BK%=S THEN BK%=0 :HP%Z=HP%+CWZ% : "seeNEW CHARACTER.
1030 NEXT AD%

2000 GOTO 2000 :END

LISTING 1A

100 'THIS SHORT LISTING CAN BE USED BY OWNERS OF THE PRINTER
110 'PATCH TO CALCULATE THE START AND END LOCATIONS OF THE
120 'REVISED INVERSE CHARACTER SHAPE TABLE IN THE COMPLETED
130 ‘VERSION. BY SUBSTITUTING THE NEW VALUES FOR THOSE WHICH
140 "APPEAR IN LINES &40 AND 650 OF LISTING 1, THE MODIFIED
150 'CHARACTERS CAN BE DISPLAYED ON THE HIRES SCREEN.

160 ‘exsssrscssssscsessssscasens “sse sense
170

180 ‘s®aCALCULATE THE TOP OF MEMORY

190 TM=PEEK (30897) +256+PEEK (30898)

200 IF TM>32767 THEN TM=TM-65536

210 °

220 ‘#w®ADD OFFSET TO TOP OF MEMORY TO LOCATE START OF TABLE
230 SMZ=TM+666 : "**+START OF SHAPE TABLE.

240

250 '#m#ADD 64 CHARACTERS X S BYTES TO LOCATE END OF TABLE
260 EMZ=SM%Z+&64e5-1 : ‘««*END OF SHAPE TABLE

270

280 "##®PRINT START AND END ADDRESSES
290 PRINT"START - SM%=" Y

300 PRINT“END - EMu=

——

overcome, by means of a minor change in syntax, when en-
tering the programme line. Using the line,

100 IF X =4 THEN CLS4

should clear the screen to red, when X=4.

What actually happens is that the screen clears normally,
followed by a SYNTAX ERROR message, indicating t e rou-
tine at 1D78H has not recognised our enhanced comy mand. p

June 1987 — Australian Electronics Monthly — 735

LISTING =2

0001 ;HHRHMEHUNARRERN RO RARNES S
0002 ;» ENHANCED CLS COMMAND »
0003 ;» BY LARRY TAYLOR 1986 »
0004 ;NHAERANAUNNRNRRRAREENNAN
0005 ;

0006 ;THIS SECTION RELOCATES
0007 ;THE PROGRAM TO THE TOP
0008 ;0F AVAILABLE MEMORY.

0009 ;

0010 VCTR EQU 7A28H ;SET VCTR AS 7A28H

o011 LD SP, 7700H ;LOAD STACK POINTER

0012 LD HL,(7881H) ;GET THE TOP OF MEMORY

0013 LD BC,ENDP-NVCT ;GET LENGTH OF PROGRAM

o014 PUSH BC ;SAVE PROGRAM LENGTH

0015 XOR A ;RESET ALL FLAGS

0016 SBC HL,BC ;TAKE LENGTH FROM TOP OF MEMORY
0017 LD (7BBLH) ,HL ;LOAD NEW TOP OF MEMORY

0018 PUSH HL ;SAVE NEW TOP OF MEMORY

0019 XOR A ;RESET ALL FLAGS

0020 LD BC,33H ;RESERVE SO BYTES STRING SPACE
0021 SBC HL,BC ; TAKE SPACE FROM TOP OF MEMORY
0022 LD (78A0H) ,HL ;LOAD START OF STRING SPACE
0023 POP DE ;RETRIEVE TOP OF MEMORY

0024 INC DE ; INCREASE BY ONE

0025S LD HL,(7804H) ;GET CURRENT RST1OH VECTOR
0026 LD (VCTR),HL ;STORE IT IN 7A28H

0027 LD (7804H) ,DE ;LOAD NEW VECTOR

0028 LD HL,NVCT ;GET START OF PROGRAM TO MOVE
0029 POP BC ;RETRIEVE PROGRAM LENGTH

0030 LDIR $MOVE TO NEW LOCATION

0031 CALL 1B4DH ;D0 A NEW

0032 JP 1A19H ;JUMP TO READY MESSAGE

0033

0034 ;START OF THE PROCESSING
0035 ;ROUTINE FOR NEW COMMAND.

0036 ;

0037 NVCT EXX ;SAVE ALL REGISTERS

0038 LD HL,1DSBH ;CHECK TO

0039 POP DE ;SEE IF THE

0040 OR A ;RETURN

0041 SBC HL,DE ; ADDRESS

0042 PUSH DE ;1S 1DSBH

0043 EXX ;RESTORE ALL REGISTERS

0044 JP NZ,1D78H 3 IF NOT GO TO NORMAL PROCESSING
0045 PUSH HL ;SAVE STRING ADDRESS

0046 CALL 1D78H ;GET NEXT VALUE FROM STRING
0047 JR NZ,CONT 3 IF NOT ZERO THEN CONTINUE
0048 POP POP HL ;ELSE RESTORE STRING ADDRESS
0049 LD DE, (VCTR) ;RETRIEVE ORIGINAL VECTOR

0050 PUSH DE ;AND JUMP

0051 RET ;TO IT

00S2 CONT CP 84H ;CHECK FOR CLS TOKEN

0053 JR NZ,POP ; IF NOT FOUND RETURN TO CALLER
0054 INC HL ;MOVE TO NEXT VALUE IN STRING
005S LD A, (HL) IGET NEXT VALUE AFTER CLS TOKEN
0056 SUB 30H JREDUCE IT TO RANGE 0-8

0057 JR Z,EXEC ;IF ZERO THEN EXECUTE COMMAND
00s8 LD B,8 jLOAD B REG WITH UPPER LIMIT
0059 CMPR CP B §CHECK IF A=B #
0060 JR Z,EXEC 3IF YES THEN EXECUTE COMMAND
0061 DJINZ CMPR ;REDUCE B AND CONTINUE CHECK
0062 JR POP §NO MATCH SO RETURN TO CALLER
0063 EXEC POP DE ;RETRIEVE OLD STRING ADDRESS
0064 POP DE ;RETRIEVE OLD RETURN ADDRESS
0065 LD DE,I1DLEH ;LOAD NEW RETURN ADDRESS

0066 PUSH DE }SAVE NEW RETURN ADDRESS

0067 INC HL {MOVE TO NEXT VALUE IN STRING
0068 PUSH HL }SAVE CURRENT STRING ADDRESS
0069 ADD A,A sMULTIPLY CLS

0070 ADD A,A JVALUE BY 16 TO

0071 ADD A,A 3CALCULATE THE

0072 ADD A,A }COLOUR OFFSET

0073 JR NZ,SKIP 3 IF RESULT NOT ZERO THEN SKIP
0074 INC A ; IF ZERO INCREASE TO ONE

0075 SKIP ADD A,7FH 3ADD 127 TO GET GRAPHICS BLOCK
0076

0077 ;CLEAR SCREEN ROUTINE

0078

0079 LD HL,7000H ;LOAD START OF SCREEN ADDRESS
0080 LD (7820H) ,HL 3SET CURSOR POSITION

oos1 Lo DE,7001H ;LOAD START OF SCREEN PLUS ONE
0082 LD BC,OlFFH 3;NUMBER OF BYTES TO MOVE

0083 LD (HL),A }LOAD GRAPHICS BLOCK INTO HL
oosa LDIR ;D0 A BLOCK FILL OF THE SCREEN
0085 POP HL JRETRIEVE STRING ADDRESS

0086 RET

JRETURN TO 1DI1EH TO CONTINUE

0087 ENDP DEFB O $END OF PROGRAM MARKER

To have the command function properly, insert a colon be-
tween the THEN and the new command as below,

100 IF X=4 THEN:CLS4

Now, when X =4 the THEN part of the statement will be ex-

ecuted, including, as is usual, any additional commands in.

the remainder of the line. However, once the colon is
reached, the BASIC ROM returns to its usual processing, via
the RST 10H routine, and the CLS4 command is then inter-
‘preted on its own and not as part of the IF-THEN statement.
This is the same solution suggested in the VZ-DOS manual,
when using disk commands, which are affected in exactly
the same way.

This is essentially the approach I have used to produce a

LISTING 3

100 REM HRanussNsnsna st ssatatsdaitemuta s srenBu st gusdntnnnnn

110 REM # ENHANCED CLS COMMAND BY LARRY TAYLOR 1986 »
120 REM REBRANNEARRRARARENRNNARNNNBRRRSHERRN BN BRB R INCHRRER I NS
130 REM » CALCULATE THE NEW TOP OF MEMORY POINTER L]

140 REM HRARNARNNRSNNNNRBARNANBBRRRENARBRB R RRR SRR TR IR RRRNN N
150 NB=79:TM=(PEEK (30897) +PEEK (30898) *256) -NB

160 HB=INT(TM/256):LB=TM-HB#*256

170 POKE30897,L8:POKE30898,HB

180 REM SANNNERNARANNENANNNEANNARBENNRINTNIRATHRRRRE SRR NR NN N
190 REM ®# RESET THE BASIC STACK POINTER »
200 REM HHNRRANANANNANEANRNIRANNNBBBNIHBRRRBRRTHRNUT BUARNRB NN N
210 CLEARSO 5

220 REM HHRNNANANNNARRAARNNERRSNRARARBNARARRARRSAR T AR RN
230 REM # LOCATION OF SET UP PROGRAM »
240 REM HUNNNRAAANARNRENNRANBBRARRRBRRRRR R R BB RN AT NN RRRERE RN
250 EB=31274

260 EH=INT ((EB+1)/256) tEL=EB+1~EH*256

270 REM HuNNannnnunalstan st s ansssnnansnanuanunnanam gussansunns
280 REM # LUDAD USER EXECUTION PROGRAM POINTER »
290 REM HENNNNNANERNERNRANRNNRABNRRANRRRARTRERR AR RN TRRR RN NN
300 POKE30862,EL:POKE30863,EH

310 REM HHNRNANNANNRNNRBBRENNINRANRRNBRARR RN RRAR RN A RN AR RRERRN
320 REM » LOAD 23 BYTE SET UP PROGRAM »
330 REM #ununnnnmnnmntntuasnuntnnnnnnnannnmmanssmmannns sasmnnnnnns
340 FOR T=1T023

350 READD

360 POKEEB+T,D

370 CS=CS+D

380 NEXT
390 REM Hunnuunnuunnusnsunnnsn sttt st sans s snnnninanannunsuns
400 REM # GET NEW TOP OF MEMORY AND MOVE TO NEXT LOCATION -

410 REM Huumuunusnnmnsstnmnstmunnantnsntnnsntnmssnnr snnnebsnnnn
420 TM=PEEK(30897)+PEEK (30898) #255

430 IFTM>32767THENTM=TM-65536

G40 REM HNNNENNRNNANANNARNRNBNERRNNRARNRRBRNRARBARR R RR RN NN NN
450 REM ® LOAD 79 BYTE ENHANCED CLS ROUTINE "
LG50 REM #uNANNNRNNNNNANNNRRNNNRRRNRRNNNARRTHNRRAR AR NR TR RN NN
470 FOR T=1T079

480 READD

490 POKETM+T,D

S00 CsS=Cs+D

S10 NEXT
S20 REM #uNuusanmntuuissntustsnmannneannmnnnssnmnnmsntnnssnnnnn
S30 REM # [F DATA CHECKSUM VERIFIES EXECUTE SET UP PROGRAM L]

SA0 REM HANNNANRNNRABERNNNENNRNR NN BRBARRRRER RN B R R AR R RN 0NN
5SSO IFCS<>10968BTHENPRINT~ ERROR IN DATA ENTRY =“i1END

560 Xx=USR(0O)

S70 REM SRNERNNNNNNNERANNANARRINA RO RA AR RRRRR AR TR RRRRRN NS
S80 REM % SET UP EXECUTION ROUTINE DATA IN DECIMAL FORM L]
STO REM HUNNNNNANSNNARRERNIRRRRRTARRTRRRRRARRR DR RN R R R AR DRR NN
600 DATA 243,49,0,119,42,4,120,34,40,122,42,177,120,35,34,4,120
610 DATA 20S,77,27,195,25,26

G20 REM 159000005500 0 5000000000 00 3090 90.00 005 00 0000950000 00 18 00 1000 00 90060600 00006 0000 1090 069 0000 00 00 30 00 0 09 6 08 6
630 REM # ENHANCED CLS ROUTINE DATA IN DECIMAL FORM -
680 REM #RNANAENNARNAERNNABANBRBRBRBNRRB DR TN BB R A AT 0N H RN N
650 DATA 217,33,91,29,209,183,237,82,213,217,194,120,29,229,205
660 DATA 120,29,32,7,225,237,91,40,122,213,201,254,132,32,245
670 DATA 35,126,214,48,40,9,6,8,184,40,4,16,251,24,230,209,209
630 DATA 17,30,29,213,35,229,135,135,135,135,32,1,60,198,127,33
690 DATA 0,112,34,32,120,17,1,112,1,255,1,119,237,176,225,201

VZ-EPSON Printer Patch, which enables all the normal
printer functions for Epson or Epson-compatible printers.
As well as providing the ability to LLIST and LPRINT all in-
verse and graphics characters, the COPY command is inter-
cepted by the patch. As a result, its function has been
enhanced to allow a proper dump of both the LO-RES and
HI-RES screens. Corrections have been made to the flawed
inverse characterdata, and when listing, the routine is capa-
ble of recognising all the hidden commands, which may have
been entered using an Extended BASIC. The patch relocates
to the top of available RAM and can be used with Steve Ol-
ney’s EXTENDED BASIC, already resident in memory, ena-
bling ready access to the functions of both. I hope that the
techniques used here to produce what I have found to be an
extremely useful utility will encourage others to attempt fur-
ther such developments.

Perhaps additional enhancements to the VZ’s BASIC could
be explored. The Commodore 64 is served by a number of
enhanced BASICs, why not the VZ? Programs which make
use of such BASICs require that the language be loaded be-
fore they will function properly. However, this islittle differ-
ent to programs using disk commands needing the DOS to
be interpreted correctly. Certainly, the opportunity exists to
endow the humble VZ with a brand new bag of tricks.

For anyone interested, copies of the completed VZ-Epson
Printer Patch, may be obtained on tape for $13, from:

].C.E. D’'Alton
VSOFTWAREZ
39 Agnes St
Toowong

Qld 4066 &

June 1987 — Australian Electronics Monthly — 79

New life for an old VZ

Graeme Meager

Since the introduction of the VZ200O computer in early 1983

many users have been mystified by the fact that the

computer did not support full level || BASIC. This article
describes a method of gaining 24 extra level Il BASIC
commands for the VZ 200 or 300 without sacrificing any

memory or software compatibility.

RECENTLY ateam of enthusiasts released a revamped 16K
ROM (read only memory) for.the VZ with the convenience
of LEVEL II BASIC on power-up and with some technical
knowledge. everv user can smarten up their computer.
As many users may remember, the existing ROMs were
a majorcause of breakdowns and possibly there are still many
old VZs put away in cupboards which can be brought back
to life with these new ROMSs. This particular occurence
prompted one user to investigate the viability of producing
.an EPROM to replace the original BASIC ROM. \When it was
discovered an EPROM was available that was pin compati-
ble with the old 16K ROM. the task for VZ300 owners was
made very simple. VZ200 owners should not dispair, with
the addition of just two diodes and one resistor both 8K
ROMs can be replaced by this single 16K chip.
Before entering into details of the hardware modifications.
[will briefly describe the extra facilities the new ROM will
provide and how they have been implemented.

THE ADDITIONAL BASIC COMMANDS:

TRON TROFF DELETE AUTO

FiX- CINT ERROR X ERR

POS ON DEFINT DEFSNG
RANDOM MEM ON ERROR VARPTR
DEFDBL RESUME FRE CcDBL

ERL STRINGS DEFSTR ON (GOTO)

Inverse characters

Owners of GP 100 and compatible printers will be familiar
with the badly represented inverse character set: these er-
rors have been corrected in the new ROM. For the owners
of EPSON and compatible printers, a version of the EPROM!
with the modified control codes and inverse character tables
is currently being compiled.

The above BASIC commands have been integrated with
the original command set. which as a major consideration,
enables all existing software to run unimpeded in the new
system. The new ROM provides all commandswithout those
messy loader routines, machine code calls and it is DOS (disk
operating svstem) compatible.

The software

Statement and command execution in the VZ is by interpre-
tation. This means that a routine dedicated to the statement
type or command is called to interpret each line and perform
the necessary operations. This is a common method of sys-
tem command execution and is used by many other BASIC
svstems. Within the BASIC ROMI there is a table known as
the RESERVE WORD LIST. This table contains all of the
words reserved for use by the BASIC interpreter.

When a line is read by the interpreter it scans this list and
if the word (command) is present it will allocate a TOKEN
value in the range 80 (HEX) to FB (HEX). This token will be

82 — Australian Electronics Monthly — August 1987

written into memory as the BASIC command. From here on
the interpreter will act on these tokensand not the original
word. Each of the new commands have their own token with
the allocated range and will be acted on in the same way the
existing commands are. At this stage it should be noted that
the original LEVEL Il BASIC did not support routines for
commands such as COPY. COLOR. MODE. SOUND, CRUN.
CLOAD and VERIFY. These commands have used tokens
originally set for other LEVEL Il reserved words. The new
VZ ROM actually supports more BASIC commands than the
original LEVEL II ROM in the TRS-80 and SYSTEN! 80 (for
non-disk sysiems).

Once a value has been allocated. execution is passed to the
VERB ADDRESS TABLES. Here the table is used to direct
the interpreter to the routines specified bv each TOKEN.
There are two VERB ADDRESS TABLES: the first is used
for statements that begin with a— VERB — for example END.
RANDONMI or PRINT. If the statement does not begin with
a token, control goes to the assignment statement process-
ing. The second table contains the addresses of verb routines
which only occur on the right side of an equals sign or com-
pliment the first verb — for example PEEK. FRE, SGN.

The new commands have been implimented by writing
new values into the above tables, so the interpreter can be
driected to the relevent processing routines.

As mentioned earlier, a number of areas in the ROM had
to be re-organised. For example. the token 9E in the VZ ROM
is allocated to the word SOUND and not the word ERROR.
as originally written. Routines within the ROM had to be cor-
rected so that when the interpreter \was confronted with a
format such as "ON ERROR GOSUB ... " it would recog-
nise the line as correct syntax.

Other commands and routines are under investigation. and
as thev are proven compatible I understand thev will be
released as an update to enhance the new ROM on a change-
over basis at a minimal price to purchasers. Each of the
EPROMS released carry a programmed serial number to
identify their generation and is apparent in the start-up head-
er which reads as follows:

ILASERLINK BASIC
VVER. 2 #2130
READY

™ L]

COMPONENT LAYOUT FOR V2200 Ls22

— 00

COLOUR

tS119
LS174

BOARD

MEMORY BOARD

A1S

Al

ADORESS BUS

VZ200 MODIFIED CIRCUIT A1l ‘ [

MREQ

~
8
=T
=
+
bl -
<

22

RO

280 CPU

OE

26 =

ROM 0
(EPROM) | (NOT USEO)
A13 [

L

20 H
R []

DATA BUS D0-07 >

l

The hardware
Firstly. readers should be aware of the following points:

(a) any hardware modifications will void any warranty if
current,

(b) this project should only be attempted by someone with
reasonable soldering and desolder skills,

(c) to date, the modification has been carried out on VZ200s,
both early and recent V'Z300s (brown kevboard) and the
LASER 200/310.

A check of compatibility with the following details should
be made before commencement.

The case of the computer can be separated by removing
the six screws from the bottom half. Care should be taken
not to snap any of the kevboard cables. The main circuit
board must then be separated by removing the screws hold-
ing it to the base. The wires to the piezo transducer will not
have to be disconnected if they arelong enough to rotate the
board to gain access to the solder side.

The next step is to remove the RF shield by desoldering
the lugs and braids attaching it to the board. For the VZ300,
the diagram here should help locate the 28-pin ROM. The
old ROM should be carefully desoldered and removed to be
replaced by a DIL socket that is provide with the new
EPROM. The unit can then be assembled and tested.

For the VZ200, two 8K ROMs can be replaced with a sin-
gle 16K ROM by adding the necessary addressing circuitry
and one extra memory address line. From the extract of the
\'Z200 circuit shown here. the 74LS139 decoder allows ad-
dressing of 000-1FFF(HEX). the first 8K ROM and
2000-3FFF(HEX) for the second 8K. These outputs need to
he combined by diodes to access the full 16K. A resistor is
needed to pull the chip select pin (active low) high during
non-access periods. To read the full 16K, address line 13 is

— —

COMPONENT LAYOUT FOR VI3G0

=

GA 00

i GA 002 g

needed. The second diagram will help locate the two 24-pin
ROMs which can be removed in the same manner. As it will
be noticed, the board caters for a 28-pin socket so no extra
holes are needed.

The 28-pin socketshould be inserted in the position nearest
the regulator heatsink. Pin 26 of the socket should be discon-
nected from the +35 V common with a sharp knife to cut the
printed circuit track. Pin 27 should then be connected to pin
28 (+5 V). A piece of hookup wire will be needed to connect
pin 26 (A13) to pin 3 of the Z80 CPU. As shown in the dia-
gram the two diodes and the 3k3 pullup resistor can be sol-
dered on the bottom of the board using spaghetti to insulate
them from other components. The diodes are connected be-
tween pins 4 and 5 of the 74LS139 and pin 20 of the EPROM,
which is in turn tied high by the 3k3 resistor.

Check carefully for any solder bridges on both sides of the
hoard, and when you are certain everything is correct, you
can re-assemble and test.

At 835 (postage paid) the new EPROM is available from
LASERLINK
20-Brunker Rd
Broadmeadow 2292 NSW
(049) 62 1678

The EPROM comes complete with socket and full
documentation wkich includes demonstration listings for
each of the 24 new commands. A list of state agents can be
obtained from the above address. All in all, vou'll find it a
worthwhile enhancement. &

CUTTRACK
BETWEEN

PIN 26 AND -5V
z V2200 CIRCUIT MODIFICATION

BRIDGE
PINS
27 AND 28

August 1987 — Australian Electronics Monthly — 83

RESTORE FILE

This is probably the most useful
utility program ever made for the
VZ200/300. After running out this
program and typing in new, start
typing in a program. Now type in
new to erase the memory; type in
PRINT USR(0) and hey presto your
program is back in memory. This
program is excellent if you're the
type of person who gets angry
with their programs.
R. Banks & M. Saunders
Mackay Qld

GHTEC A 15 =t s TFE

Tn FIOEET HF LS+ T4 GOT0 0

DL F2LALEL L TELFE. 90, 22, R 272,26,
E.FE FE., 20 5. 00

STHENES BT

51)as-}u /on_’ Program loadss rats 7c,s‘:zH—qa|e4H (3!058—3)0%9)

EnJ oQ AASic S‘;q‘)cm‘}', N\Avh;’ 5 ,n““. l‘-’j;b,

£nd oF AASIC progvam 2 X .nvll, ;’5;"‘-

HL"‘(j Vel o . —a PST P‘Lr' ondil 3. vl Jl.“cc‘hJ. (EDS + E°3>'

7952 21 £9 7A
Ss 3¢ o1
s7 Es
S¥ Cb fFg 1A
$B Eq
sC M€
D FE oo
sF 25 oA
7 6 a3
€2 3F F¥
64 B¢
és 20 fs
§& BD
43 Cs
o
68
fc
&d
€
797!
72 7E
23 F£ oo
75 20 ks
77 23
18 22 fq B
,q.'ﬁ 3E oo
2P FFE oo
7F CD 7R £
C3 6¢ oo

LD HL,7AEqH

LD (HL>)1
PusH HL
cAL. 1AFS H
Por HL

> A, (HL)
CP . avll
IR 2, LP2
INC HL

LD A, FFH
cCP H

TR N2, LPt

INC HL

LD A, (ML)
CP .nil.
TR N2, LPY
INC HL

Lo A, (HL)
CP .null
TR N2, LP1
INC HL

LD (‘78 Fq ”))HL

LD A ax
CP w®
cALL JE9AN

TP o066 A

Seb phv. $o SoOB,

Pt non-.rull. (dimmy) ik, S08.
Save S08 o~ stack. 93 ha)s
Lire /oo:'n';‘cfj vouhiaa. (Sb" Soh P-)v,>
Rysdore P-}r

¥ }:b'h of PST ;nalo A“"‘j.

s i+ an E0S .nell. ?

YLSI 9o cheek on 0B L nulls,

sUMp ﬁ')f o nux} in PST‘_
Chack G Tom,

)-‘u' L:,'}L of p"",

Go ch‘(s -lu)' PST L\Q')g.
Lo Bb'}(. DQ ,)ll"

Tom (FF;‘FM} readud . - ¢-><'nl‘/¢.vro".?
Go back 1o Jo} Py Lnﬁt,
Bump P-}v,'}o rxt in PST
Por byt ot PST Lk A-vey,
Is "} Gush EFob .null?

Go bad, Yo Yok pPST j)tok.
Bump p¥r. +» ~d in PST,
2R Lwﬁ-& o PST ik A-rcj_
le'k second £08. mill. ?

Go ‘:n.d. L dsl pPsT)"3;'“
Bump ph. to mxt above pST.
St Eob piv. b HL add,
Leve A-. ,
Ruseh 2-9733.

CLepng rov’r'w\

E FILE COFIEF b'ﬁ

18 DATAZES. T3, 57, 1209, 203, 182, 2072, 138, 223, 242, 293, 149, 53
26 DATAZ229, 265, 177,52, 22, 66, 56, 285, 244, 55, 205, 231, 52
28 DATAEZ., 246,560,210, 122,153, 115, 54, 261

4 FORI=218E7TOZ1161 :KERDA FOKEL . A HEST -

E FILE COPIER INSTRUCTIONE -

CEUN E FILE COFIER THEW FOKEZ1Z2 1” 1VE s DCRETLRR

THE frss@wdily FROMFT WILL AFFEAK. LOAD MACHIME LAMGLAGE FR
-0GRAM TO BE COPIED

MHEH READY FROMFT RAFFEARS FOREZIQSY, 242 POREZ2 OS2, 14
CRETURN » POREZ18:5, 241 FOKEZ197E, 125 FUKE21671, 172
CRETLRH Y FOKEZ16VZ. 52 FOREZOZ24, PEEKC ZA733 » CRETIURN
POEEZR225, PEERKC20VS] 2 PORKE21217, 1V . “FILE HAME' CRETURH 2

35 bj,l,_ Preoren Yo lbad B-0L J’Apb.
Prgopy,,.., Ipaded ;n‘l‘o LAm v pnr Dos VCJOFS.

795 B Es Pusk HL Save HL vey
sC a1 39 7% LD He, 7339 H Dk b FLAG2
33 ¢R B¢ RES ((HL) Resok bit € }o 2000 (crUN P)-ﬁ)
6 B g€ res 3, (ue) Rud bib 3 4o 2wo (Vewey fly)
43 E1 PopP HL Rutove ML re.
1S f3 DT Diseble 1~tevple.
s (D 8C 35 CALL 355C Prck vp ner.
(s Es PUSH HL Seve HL vey.
{q (> 31 35 chL 3581 \ ,
{c 2 42 38 LD He, 3¥42H warting Fud
F ¢ fa 3 cALL 3)F4
1A ¢p k7 35 CALL 35£9 fﬂ Saviag voutina CLoAp
s 3F R Lp A, FR H Avts —execte qu .
7 32 D2 9A Ly (7/41’1H1A 6uww or cassehe 1/0.
JP 3693
RET.
__‘Hl_'\. veub Gosk gix L\ﬁu oc proqvam.
F3 DI
D C, Fr H
TP 3483
3075o\{¢ 2151 E[F Parl of DCB for casbe CrLoAd (P:;J;::"T
3088 A\ 1’ A4S St} oF BAsic jote.

3121y 19 F1 Skt By i~ IJo buffer.

String file name

Recently I required a program
to save data to a disk file on
VZ300. Unfortunately, I dis-
covered you cannot use a string
as a file name and so I de-
veloped this little program. It
searches through RAM to find
where the program begins and
then locates the disk file han-
dling lines and stores their

RAM location in an array.
When a file is to be accessed it
pokes the file-name into these
locations. When the program

a few seconds while the pro-
lines.

. T. Hand,
Bentlelgh, Vic

10 GOTO 1000 1
20 REM LOAD FROM FILE Fs$

30 GOSUEB

10000: REM CHANGE FILENAME

40 REM xx

SO OFEN"

w0 -

&0 REM xx

70 IN#"

“,A,B

80 REM xx
90 CLOSE" "
RETURN

100
110
120
130
160
170
180
190
200
210
220
220
240
250
260
270
280
290
300
310
320
330
340
. 350
360
370
280
390
400
410
420
430
440
45
460
470
480
490
500
1000
1010
1020
1030
1040
1050
© 1060
- 1070
1080
1980
1990
2000
2010
2020
2030
2900
2910

E

REM SAVE TO FILE Fs$.
GOSUB 10000:REM CHANGE FILENAME
REM Xx

OFEN"

"1

REM xx

FR#"

“,A,B

REM xx
CLOSsE™ B
RETURN

REM ERASE FILE Fs

GOSUB 10000:REM CHANGE FILENAME
REM xx

ERA" "

RETURN

REM =~

IT 1S VERY IMFORTANT TO ENTER
THE LINES WITH REM xx
AS THESE ARE USED TO LOCATE THE

:FLACE TO CHANGE THE FILE NAME.

REM MAIN FROGRAM

THESE THREE ROUTINES ALSO SHOULD
BE AT THE TOF OF THE FROGRAM
TO SAVE TIME WHILE SEARCHING
FOR THEIR LOCATION IN MEMORY.

WHEN SAVING OR LOADING DATA,

begins, nothing will happen for

gram searches for the required

2920
2930
2940
2950
2960
2980
2990
3000
3010
2020
3030
3040
3050
3060
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080

4090

4100
4110
4120
4980
4990
5000
S010

15020

5030
9980
9990

10000
10010
10020
10030
10040
10050
10060
10070
10080
19980
19990
20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
20100

:TO ALLOW ENTRY OF YOUR OWN
:DATA. THE ABOVE IS JUST AN
sEXAMFLE OF SAVING DATA TO A
:DISK FILE.
EXXREXXRXXEXRKKRXXRXRKXRXXNXRKX

REM SAVE TO A FILE

CLS

INPUT"PLEASE ENTER THE FIRST VALUE";A
INPUT"PLEASE ENTER THE SECOND VALUE";B
GOSUB S000

IF ER THEN GOSUB 250

GOSUB 130

RETURN

REM LOAD FROM A FILE

cLs

GOSUB 5000

GOSUB 30

cLs

FRINT "FIRST VALUE ENTERED WAS - "

FRINT A

FRINT "SECOND VALUE ENTERED WAS -"

PRINT B

A$=INKEY$:IF LEN(A$)<>0 GOTO 4080:REM CLEAR BUFFER
FRINT:FRINT

FRINT "FRESS SFACE BAR TO CONTINUE"

A$S=INKEY$:IF As$<>" " GOTO 4110:REM WAIT FOR SPACE
RETURN

1

REM ASK FOR FILENAME

cLS

INFUT "PLEASE ENTER THE FILENAME";F$

F1$=MID$ (F$+" " 1,6)

RETURN

H
REM CHANGE FILE NAMES TO F$

FOR I=1 TO 7

IF F(1)»=0 GOTO 10080

C=0

FOR J=1 TO LEN(F1s$)

POKE F(1)+C,ASC(MID$ (F1%$,J,1))

C=C+1

NEXT J

NEXT I

RETURN

H

REM INITIALIZE ROUTINE

DIM F(7)

c=1

FOR 1=31500 TO 33000

IF NOT(PEEK(1)=42 AND FEEK(1+1)=42) GOTO 20080
FOR J=1 TO 1+20 :
IF FEEK(J)=34 THEN F(C)=J+1:C=C+1:G0T0 20080
NEXT J

FRINT "ERROR FINDING FILE NAMES":END

IF FEEK(I1)=94 AND FEEK(I+1)=94 GOTO 20100
NEXT 1 '

RETURN

THE LINES WITH IN# AND FR#
CAN BE CHANGED TO STORE YOUR
OWN DATA

GOSUB 20000:REM INI+IALIZE

CLs
FRINT "“DO YOU WANT TO * -
FRINT "SAVE, RE-SAVE OR LOAD"

A$=INKEYS$: IF LEN(A$)=0 GOTO 1040 <
IF As="R" THEN GOSUB 2000

IF As$="S" THEN GOSUEB 3000

IF As="L" THEN GOSUB 4000

GOTO 1010

: .
REM RE-SAVE A FILE

ER=~-1

GOSUB 3000:REM ENTER DATA
ER=0 -

RETURN - .
EXXXXXXXXRXXARRXXXRRRARRXRARRXX
:THIS ROUTINE CAN BE CHANGED

70 — ET! February 1988

1@ REM DISK DIRECTORY DUMPER
2@ REM "RBY G.TUNNY (C)OPYRIGHT 1938"

30 REM* ¥ X XXX XXX EXERXXXEXRAFEXX

4@ LPRINTCHR$(Z7);CHR$(Z1)35:REM SET SINGLE LINE FEED
5@ CLS:PRINT" D1SK DUMPER “:REM INVERSE
& INPUT"HEADING FOR DIé“":Hs

7@ INPUT"INSERT DISK AND HIT KRETURN"3;XZ$

B0 LPRINTY ———=" tH$ 3 " e

85 LPRINT

o

90 POKE3QR74, 1 ¢ OUTPYT DEVILE CedE

10@ STATUS 1= PRINTER
105 LPRINT AR
- s cASSErTE
107 POKE3Q875, 1 .
11@ DIR i
* Esc 2).
120 FORI=1TOLEN(HS$)+7 :
Me‘b ho" NOa"E
130 LPRINT"-"35:NEXTI :
°on EPS‘-");‘
135 LPRINT"-"
143 INPUT"ANOTHER COPY*3v$
19@Q 1FYS="YES"URY#H="Y" THENRUN
Disk Directory the disc status directly on to
the printer.
quper . G. Tunny
This handy little program Gorokan
dumps the disk directory and NSW

74 — ETI July 1988

CTRL-Break Disabler

1 "2DISABLE CTRL-BEREAK FROGSRAM®

2 % "VZI300/200"

3 #(CO)OPYRIGHT 1588 MAY

BY G.TUNMNY*

*

5 TM=FEEN{30Q897)+I5&«FEEN 2EEF3)-4Q

10 PURE3Q3Y7, TH-INT(TM/ 252, =295 POREZOE9S, INT(TM/256)

15 TM=TM-1:A=TN-3553&
20 FORI=ATOA+34:KESDD

3B POREI,D:NEXTI

4@ POREZQ8456, TM-INT (TM/Z3&) 22546 POKEZD8B47, INT(THM/256)

50 POKE32&45,195

60 REM®#REST OF FROGRAMa*

7@ REM
102 DATA33,:53,104,70,2203,€0,42,02, 221,00, 33,223, 104,73, 203
110 DATAGU,ﬁ@ebE,201‘2&3,33‘44,30,w1,@@,ml,2@5,92,52'251

This small machine code pro-
gram uses the interupt to
check for the CTRL-break
keys. If they are pressed the
program counter jumps to the
start of ROM and restarts the
system. But there are a few

save the program before you
execute it.

To return the CTRL-break
keys back to normal, enter
POKE30845,201 and to re-
start the machine code pro-
gram, enter POKE30845,195.

basic commands that disable G. Tunny
the interupt, such as DOS Gorokan
commands. It is advised you NSW

ETI OCTOBER ‘88
124

S-c..})"\)'wupl- gx”-));\;‘)’l‘m‘)‘cd, bn I\'ﬂnboa\ra‘ S'f.&hn;f\

rovFina 287 D/E/ 3
1882/2. Tom ph
30397)8,
A FDd
46
c6 so
ar o2
Cq
S0
2 DF
44
(8 so
& 02

Cq
F3

o oo
W sc
F8

C3 oo
o oo

3

13

14

ol
34

o0

TP gdak of

188 E/F
308€2/3

LD HL, R FD
Lp 8,(HL)
8172, B.

JR 2} w2
RET

NOP

LD HL 68DF
1o 8 (ne)
Br72 B
JR 2, %2
RET

D1

Lp HL'&QQC
L) 8C Nmat
CALL 345C
EL

JP waey,
Nof’.‘ .

Progyvam, (3084;}(/7)
usg piv.

Row addv, k'bd, BJx/sner/c[2/V

lood madrix 1nte R reg.

Bib 2 u sHFT key.

]Q- 2eve Jhin SHFT]«,3 aLLpnsuol.
. Q’S(, Yo'}wn.

Row addv. k'bd. G[S/cTar/D]AF

LO*J MG}V?x lv's)'o 5 Yt3.

Biba s cTre)(,,3_

J6 2eve dlae care key dejoresed.
else redura.

Disable M)’va}r.

Set HL (C"‘ﬁs Y. 44D

Sk 8¢ (Juvaion) Fo 1D

Sound Youlriacr.

Ehab(l ;h‘)'v-'up)’1 ;

Gold J-Lu-)' Comr,u"br-.

VZBUG — A useful program for
memory related work on the
VZ200 or VZ300 "

Have you ever wanted to look inside a VZ memory chip?
There are two ways to do this. The first is to get a
hacksaw and cut the chip in half. The second method is
to use VZBUG. We think you'll find VZBUG much more

informative than the hacksaw.

ONE OF THE DISADVANTAGES of the
modern home computer is that the user
never really gets the opportunity to get
into the guts of the machine. Most of the
time the small home micro is in BASIC
mode, and the user doesn't have any
idea why the computer does what it
does. VZBUG remedies this by letting
you get into the “nitty-gritty” of your
VZ'’s insides.

VZBUG is ideal for fixing jammed
programs, or for other memory related
work. In addition, you can use VZBUG
for loading and saving data onto casset-
tes, clearing the screen, typing text into
memory and printing it — a mini word
processor!

Once you have VZBUG installed you
will wonder how you ever got on with-
out it.

Functions

There are seven main functions in
VZBUG. All numbers are entered from
the keyboard in hexadecimal. The func-
tions are called after the program is
loaded with the following commands:

C —Clear screen

G - Goto memory location and execute
program

I-Insert ASCII into memory

L —Load from cassette

D - Display memory location

O - Output memory

S — Save to cassette

To terminate the program and return to
BASIC, simply enter G1A19, which
translates to “goto HEX 1A19 and exe-
cute”. 1A19 is the return-to-BASIC
address contained in the VZ ROMs.

Clear screen — just type “C” and the
screen clears, returning the prompt
character to the top left hand corner of
the screen.

Goto — type “G” and the computer will
ask you for a memory location. Enter the
location in HEX and the computer will
jump to that location and execute what i
there. If there is not a valid program at
that address the computer might lock
up, so be careful.

Insert ASCII into memory — type “I”
and an asterisk will appear on the
screen. Enter the start address (again in
HEX), and start typing. This is in effect a
mini word processor. To exit the com-
mand and return to the VZBUG com-
mand loop, simply type CTRL “E".
Load cassette — typing “L” will result in
the word “WAITING” willappearon the
screen. Press PLAY on the cassette
player and the next program on the tape
will be loaded, in the same manner as

the BASIC CRUN command. CTRL
BREAK will terminate the load and
return you to BASIC.

Display and alter memory ~ this com-
mand allows you to display and alter
any memory address in the VZ RAM
area. Type “D” followed by the address
you wish to access, e.g. DCF00 will dis-
play the contents of memory location
CF00. If you wish to change the con-
tents, simply type in the new data, in
HEX of course. If the data typed is O.K.,
press RETURN to proceed to the next
memory byte. To return to the VZBUG
command loop, simply tyvpe “N”.
Output memory - there are four diffe-
rent ways of accessing the VZ's memory
with this command. They are:

“Output to printer in ASCII” - This
prints out the contents of the locations
selections on your printer in ASCII for-
mat. This is used to print out text
created with the “I” command. The out-
put is terminated by the HEX bvte “00”,
which is the terminating character of
the “I” command.

10 CLS

SO FRINT

60 FOR X=1 TO2000:NEXT X
70 CLS

80 N=1000

100 FOR A=-20480 TO -19386
110 READ As

130 GOSUE SO0

140 G=Fx16

150 GOSUE S10

160 J=G+F

170 FOKE A.J

180 NEXT A

210 STOP

SO0 Ze¢=LEFTE(As,1)
S0S 6OTO S20

S10 Z$=RIGHT$ (A%, 1)
S20 E=ASC(Z%)

S40
SS0O FRINT"ERROR"

S80O FRINT"WRONG EBYTE ":AR$
. §90 STOP

S&0 FRINT"CHECK LISTING FOR INCORRECT
S70 PRINT"CURRENT ADDRESS":A

1000 DATA IE,0D,CD,ZA, 03, IE,2A,CD,ZA,

20 FRINT @200,"VI MEMORY LOADER"
IO FRINT @ 232,"============
40 PRINT"THE FROGRAME WILL AUTO.EXECUTE ON CCMFLETION"

175 M=M+1:IF M=16 FRINT"LINE"::M=0:N=N+10:FRINT N

200 FOKE T0862,00:FOKE Z086Z,176:M=USR(N)

SIZ0 IF E>47 AND E<S8 THEN F=E-48:RETURN
IF E>64 AND E<71 THEN F=E-SS:RETURN

BYTE"

03,CD,F4,2E,FE, 00, 28

1010 DATA F9,FE,S3,CA,A7.B1,FE,4C,CA,ST,E2,FE, 44,28, 7A,FE
1020 DATA 49,CA,&4,EB2,FE, 4F,CA,B2,E2,FE, 47,28, 1F,FE, 43,28

96 — Australian Electronics Monthly — Oct. 1988

“Output to printer in HEX" - This prints
out the contents of selected locations on
your printer in HEX code. Only 256
bytes are printed and then the program
stops, displaying a “?” prompt on the
screen. Press RETURN to print out the
next 256 bytes or “E” to return to the
VZBUG loop.

“Output to screen in ASCII” — Same as
the first option, but the output is
directed to the screen, not the printer.

“Output to screen in HEX” — Same as
the second option, but output is
directed to the screen and blocks of 16
bytes are displayed at a time. To return
to command loop, press “N”

These options are selected with the fol-
lowing command line parameters:
Select O for output, then:

S/P to select Screen or
Printer output, enter
start address in HEX,

H/A to select HEX or

ASCII format.

e.g. to display address B00O on the
screen in HEX,
type O,5,B000,H

Save on cassette — this command allows
you to save a block of memory to cas-
sette. Type “S” followed by the name
you wish to allocate to the block (14
characters maximum). CTRL “E”
finishes the entry of the file name. You
must also enter the start and end addres-
ses of the block and then select either
“B” or “A”, depending on whether you
want the block saved as a load-only or
auto-execute routine. The “B” parame-
ter saves the program as load-only,

whereas using the “A” parameter will
create an auto-executing file. If you use
the “A” parameter, be certain that the
start address is a valid execute address,
or the computer may lock up.

Getting VZBUG going

VZBUG is loaded as a BASIC program
shown in the accompanying listing. I
would strongly suggest that you enter
the program in a number of stages, sav-
ing your work progressively. Take your
time - maybe you should consider
entering the data in two or three sittings,
rather than a single eye-blurring, mind-
boggling session.

Before you run the program initially,
SAVE IT to cassette. As is always the
case with machine-language-loading
BASIC programs, a single error in enter-
ing the DATA statements can result in a
computer lock-up, and the loss of all
data in memory.

When the program is loaded it pokes
into memory all the HEX code con-
tained in the DATA statements at the
end of the listing. [t also checks to see if
you have accidentally entered a non-
HEX byte, and if so displays the address
and contents of the incorrect byte. You
can use this to locate and correct the
error, by comparing the listings.

If you enter an incorrect but neverthe-
less valid HEX byte, the program will
not trap it, and it may cause lock-up, so
proceed slowly and carefully.

The program occupies addresses
B00O to B447. It cannot be moved as it
contains absolute addresses. I am pre-
pared to supply reassembled programs
at a different address, if you drop me a
line at my address (see end of article),
including a blank cassette ard.cheque/
money order for $10.

Useful subroutines

Here are some additional useful sub-
routines [have implemented in VZBUG
for users.

Executing hexadecimal address B151

“instructs the computer to accept either

two or four bytes from the keyboard,
convert them to HEX and store them at
HEX CFFA/B. The size of the input, two
orfourbytes, is determined bythe check

. byte located at CFFF. If the check byte is

HEX AB, then two characters will be
accepted. Any other data willallow four
bytes to be accepted.

Calling address B19F converts HEX to
ASCIL, and is used to display HEX data
on the screen. The value to be converted
is the one resident in the accumulator,
after conversion is completed, the con-
verted value is held in the accumulator.

Location B42F contains a routine to
convert ASCII input from the keyboard
into HEX. As with address B19F, the
accumulator is used for both the origi-
nal and converted values. The D and E
registers are also used for this.

Besides these useful subroutines,
there are many more contained in the
VZ ROMs. Included with the assembler
tape from Dick Smith Electronics is a
full listing of the useful VZ subroutines.

Ready set go!

Now is the time to roll up your sleeves,
polish your glasses, take the phone off
the hook, and enter in the VZBUG list-
ing. REMEMBER - take it easy, be care-
ful, double and triple check, and save
before you run. HAPPY COMPUTING!

Reg Batger
13 Hillview Rd,
Kellyville 2153 NSW

1170 DATA C%,3ZF,CB,IF,C%,3F,.CD,2F,B4,CD,IA. 0T, 4F,ZAF2,CF DATA ©0z,21,D0,CF,CD, A?..-4
1140 PATA E&,0OF,CD,2F,B4,CD,ZA,03,C9,7E.20,CD,7A,0 DATA .CZ, 5 FE CF,-I,FA,CF_.4D
1150 DATA I2,FF,CF,CD,F4,2E.FE,00,28,F9,FE, D.28,23, FE 4E DATA 36,CZ,00,B0, . . .CD ,BI,CD,ED.BI,DD
1150 DATA CA,00,EBO0,JE,AR,Z2,FF,CF,CD,S!,B1,ZA,F6,CF,CD,9F DATA 2A,A4,78,DD,22,E0,CF,CD,87,E2 s00,DD,77,00,3E
1170 DATA E!,CER,27,CH,27,CE,27,CR,27,47,3A,F7,CF,CD,9F, E1 1400 DATA ©D,DD,77,01,C3I,00,E0,IE,08,CD : CD,F4,2E,FE
1180 DATA B0,ED,SE,FO,CF,12,2A,F0,CF,2 +FC,CF,CD, 38, ElL 1410 DATA ©O,CA,8C,E2,FE,87,C8,CD,3A,0%,DD,2A,EO,CF,DD, 77
1199 DATA IE,0D,CD L0, C3,B2, RO, CD,_,n,.4 cD,S0,34,CD,S0 1420 DATA 00,DD,23,DD, 22, En CF co, B El,_E AG, co iA,03,C3
1200 DATA Z4,CD,S0,7Z74,CD,SC Z4,CD, S¢ 4,CD,S0,3Z4 1430 DATA a 0 gt B G
1210 DATA C9, DD.-l F4 EFy DD._-.F4 CF CD F4,2E,FE,00,CA,S? 1440 DATA
1220 DATA Bl.ll.'b B4, 47 1A,B8,CA,72,B1,FE,FF,CA,S?,E1,13 1450 DATA
1270 DATA 18,F3,CD,? ah _DD.-A F4,CF, DD 77,02,DD DD, 22 1450 DATA E,48_CD
1240 DATA F4,CF,CD .El._A_FF_CF_FE_AE CA_‘?&_B! 1470 DATA I CD F4.“E FE
1250 DATA FE,F8,C8, 1480 DATA 0O "B F‘? FE 48, CA,-.:, E_, 18, ED. E
1260 DATA I¢ 1490 DATA OD,CD,3 2 78,3A, E“ CF,FE,S0,CA, 0F 4E4,CD
1270 DATA 1500 DATA 75,-5, L 03, 3A, E-.CF‘FE,JO._G
DATA 1510 DATA S1,3A,AS,78, B3, 34, A4_,7B co, 3, 3€,0D,CD
DATA 1S20 DATA 3IA 2A,A4,78,06,10,7€,CD, 63,83,23, 10,F5 ,22,A4
O DATA 1530 DATA 7a,covr-‘4, 2E,FE,00,28,F9,FE, 0D, 28, DS, FE, 4€ , CA, OO
DATA 1540 DATA BO,18,EE,Z2,F0O,CF,E6,F0O,CR,ZF,CE,IF,CB,ZF ,CR,IF
DATA 1550 DATA CD.-F E4,CD,ZA,03,3A,FO, CF E6,0F,CD,2F, a4 ,CD,
DATA I ..E 41,c0..A, s 1560 DATA ,C9,3E, 10.._,54 CF,3A,AS,78,4F,CD,C4,E3, 3A, A%
DATA = CD,F4,2E,FE,O'),28.F9 FE 42.CA 4 s B2 1570 DATA 78_.4F,CD C4,BZ,0E,20 CD_.BD, _,._E 10,32,g8,CF, ZA
DATA JE,0OD.CD, A, 1_.Dn CF,0E,F1, F‘_CD 1580 DATA EB,CF,FE,OO,EB,S.S ,3:.EB,I:F 2A,A4,78,7€,23,22
1020 DATA 0, OO, OO, 00, 00, 00, ¢ .) 1590 DATA A4,78,CD,C4,E ,OE,ZO,CD;BD;QS,lB,EE,OE.oA,CD,BD
1040 DATA ’ _.,13,,_‘50 (:9 01 18 E4,CD 1600 DATA 05,C3,00,E0, _.FC!,CF,Eé,FCl,CE«,:F,-CE«,:F;cg,ZF,CB
1050 DATA B 81 CD 4EB,BO,2A,FA,CF,E9,CD,3A,0Z,CD, 1610 DATA IF,CD,Z2F,B4,4F,CD,8D,0S,IA,F0O,CF,E6,0F,CD,2F,B4
1060 DATA &E,BO,2A,FA,CF,22,F0,CF, c_,a:,sm cD,St,B1,TE,OD 1620 DATA 4F,CD,8D,0S,C9,3E,3F,CD,3A,03,CD,F4,2E,FE , 00,28
1070 DATA CD,3A, ©0I,2A,F8,CF,CD,9F,B1,CE,27,CE,27,CE,27,CR 1530 DATA F9,FE,0D,28,8D,FE,45,CA,00,E0, 18,EE,0E,0A +CD. BD
1080 DATA 27,22,FA,CF,3A,F9,CF,CD,9F,E1,47,7A,FA,CF,80,32 1640 DATA 035,ZA,E4, CF,_D FE,00,28,DC, Z2,E4,CF, C.,s7 BI,
1090 DATA \F&,CF.CD., q;:_sl CE,.2 7,CE¢.27,:5«,¢* CE.27 1550 DATA 0, CA, (‘)O,Em 'FE,OD,CA,27,E4 4F ,CD, BD
1100 DATA I2,FD, CF,ZA,F7,CF,CD,9F,EL, 47' *A,FD,CF,80,32,FH 1660 DATA (').u._A Eb CF.-.,lB EB,3E,0A,4F,CD,B8D,0S, 18 s _,11
1110 DATA CF,C9. 24,F0, cF, 7 .cb,c9,80,70,CD,C?, EO, 1670 DATA Ib6,E4, SF, 1A,C9,.H,.~1,3-,3.,.4_34,36,37,.8,39
1120 DATA 3A.07.7E.CD.C9. B0, C3,E9, B0, 32,F2,CF E.FO,CE,IF 1680 DATA 41,42,43,44,45,46,FF

e

Oct. 1988 — Australian Electronics Monthly — 97

and
4 15
Intorap b Sevice Rovking
RV B
Ualvey Cov

Clock

This is another of my inter-
rupt controlled programs for
all you VZ owners out there.
This machine code program
could be put into games as
an accurate timer. Because
this program does not depend
on basic, it will not lose track
of time when you break out
of the program. There are
only a few commands that
will make it lose a second or
two, such as DOS or sound

ETI NOVEMBER ‘88
120

ND*L
F;ur

"X aY

4 Cfr—\’) o\Pe\'itj

commands.

The storage locations used
for the seconds, minutes and
hours are written in the Basic
program and can be poked to
change them. It is advisable
to save this program before

you run it because machine
code has a nasty habit of !

crashing.
G. Tunny
Gorokan

NSW

1 "sensansnsnsenss

T CLOCK £

«w N

'# PY G.TUNNY =
4 "+ (CIOPYRIGHT »
S "# JULY 1988 *

O THREERERFERRRERR

1@ DATA33,492,121,53,192,54,60,58,197,121,60

20 DATA254,60,40,4,50,197,121,201,33,197

30 DATAIZI.Sé.B;jB.l?k;121,60,254,6B,40

4@ DATA4,50,194,121,201,33,194,121,5410

50 DATA1,0,1,33,42,0,205,92,52,58

-6@ DATA195,121,60,254,13,40,4,50,195,121

70 DATA201,33,195,121,54,1,201,0:0

100 TH=PEEK(BBE97)4256&PEEK(3@B?B)—\2§ 70

112 POKE3@897, TM=INT(TM/256) %256 POKE3QE98+ INT(TM/256)
120 TM=TM-1:A=TM~65536
130 FORI=QT068
140 READD:POKEI+A,D
150 NEXTI
160 POKE3@846, TM~INT(TM/256)#256: POKE3@847, INT(TM/256)
170 POKE3@845,195
CLS

210 S=31173:’ STORAGE LOCATION FOR SECONDS
220 M=31170:' STORAGE LOCATION FOR MINUTES
230 H=31171:' STORAGE LOCATION FOR HOURS
240@ PRINT"#+ENTER CURRENT TIME#+"®
25@ PRINT:INPUT"MINUTES" {A:POKEM, A
26@ INPUT®HOURS*® jAtPOKEH, A
270 CLS
280 PRINTA32@, "SECONDS", PEEK(S) " *
290 PRINT&0@,PEEK(H) " :" jPEEK(M)§* *

300 GOTO 280

application of interrupt vse.
30845/6/7 = 219D/E/FH

at

So =

hovr

~

Vi

are

Vov)'l-lu.

o‘LlMLd o Mat} S)\u,"‘

ot 3E39H. M is CAMLd by

2FBCH. vy 20 mM.See.

) A cv-.-)l't.a’

Frera .

Finas per Second.

Area,

lln

"'\&j Cavse P'QALLMS TS Somu aplo}l'cc'l‘i'onf.,

3nqo 79C2H — M.
317 79 CiH — Hour.
311 6% 79 CoH — KounT
31193 79 CsH — SEC

21 Co 79
35

Co

3¢ 3c
3 Cs 79
3c

Fe 3C

25 o4
2 Cs 99

21 Cs 79
3§ oo

21 €2 79

O] ©Oo o|
2

¢» sC 34
3 G319
3C

FE oD
28§ o4
32 C3 79
“q

21 C3 19
36 o)
Cq

o9 o0

CL0CK

ETI Nov 85. p I20.

LD HLj KoonT
DEc (HL)
RET N2

L> (), 4o
Lp A, (se0)
INe A

CP 4o

IR 2, 4 —
tp (sec), A

RET

LD HL SEC <—
> (HD), o

LD A (mm}
Inc A

cP &o.

IR 2,4 —

LD (M IN)) A
ReT

LD HL, miNe&
LD (HL),)
Lp BC, 2s¢
L2 HL) 42
CALL 34SCH
LD A, (Hook)
INnc A

CP I3

TR N2, 4
LD (Ho\m))ﬂ
RET

LD HL) HovR <

L» (He), 1
RET

Nof.(-_

Posk ML o} ',-&u»rup} covnter Cou'n‘f down Secs

Decrememt counter

Rudown do maunling il wot Zufoj;'?.'SQ.. conbian 1o st Fon.
Rus ot Counter. (cv.'}fu..l \mlu;)
P}y Sec b A

geo.. Y‘ou‘)‘;f\o

}-scnmon} A
a‘*}omfg w"”- &O,
‘C 2evo 30 40 M, Yuvsr;M.J c‘u Con“fnvg,

QLSJ S£C

Bk HL &} Sgc
S‘e_l SEC to 2evo
(Pu} MmN I:\'¥'o A
Jnevimed A

Gm'qavg Ld'lu {0,

’O 2wo 9o 4o l\wv' Vov)’;fu.’ (_b‘«. Con"':ﬂuL.

ﬁud MmN

Pornk HL o MmN

St miv 4o 2evo,
S-\-}’ dUVL'l')'O-\ ‘l‘o 25‘(,
S.c/l' J‘er\x "-o 42

Sovwd bu-p wevy "\ovr.
Po} Hour imte A

hhercrmemt A

Gomparc wibh 13,

i€ 2e 90 Fa hovr veset rovking, ehe continve,
Ruset Houz.

Riborn b mainhine,

foiak HL & Hour

Sed' hHowe 4o onc.

Ridora Yo mamlbine .

Hello program

This hello program loads the
directory onto the screen and
convenlently allows the user to
load, run or erase programs
without typlng lengthy filenames.

If there are any filenames that
you don't want to come up Inthe

hello program, rename the |
fllenames to have an asterisk at
the front. .

e.g. a file - 'plcture’ becomes
(*Picture).

G Tunny |
Gorokan
NSW ‘

ETI FEBRUARY ‘89

HB—q

1 GOT(1800

3 REM!!

4 LOAD* "

5 REM!!

& BLCAD® =
1@ REM!!

2@ RUN*® b

3@ REM!!

4@ BRUN® "
5@ REM!!

6@ ERA" ® tRUN
9@ REM

98
92 *# DOS "HELLO® PROGRAM
93 *» VZ300/200

94 *# WRITTEN BY G.TUNNY
95 *# (C)OPYRIGHT 1988
96 "% NOVEMBER -

Q7 THERRSSRABRBRFFERRIRIS SN

100 T=PEEK{30884)+236*PEEh (140885)
120 REM

130 T=T+1

133 IFT>32767THENT=T-463536

14@ P=PEEK!(T)

135@ IFP=33ANDPEEK(T+1)=33THEN20Q
160 IFP=94ANDPEEK(T+1)=94THENRETURN
170 GOTO130@

200 T=T+1

210 IFPEEK(T)=34THEN230Q

220 GOTO2020

230 T=T+1

240 FORI=1TOLEN(FS)

250 Cs=MIDS(Fs$,1,1)

260 C=ASC(Cs)

270 POKETsC

280 T=T+1 =
29@ NEXTI

300 IFL=7THEN160@

310 FORI=LTOL

320 POKET,32:Tw=T+1

330 NEXTI

340 GOTO160

100Y T=28472:C=45:Am]

1003 P=PEEK(T):F(A)=P

1910 POKET.C:POKET+1.,93

1020 T=T+321C=C+11AmA+]

1030 P=PEEK(T):IFP=94THEN1@5@

